题目内容
【题目】在平面直角坐标系
中,已知椭圆
:
的离心率
,
,
分别为左、右焦点,过
的直线交椭圆
于
,
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)设过点
的直线交椭圆
于不同两点
,
.
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
【答案】(1)
;(2)![]()
【解析】试题分析:(1
的周长为
可得
,由离心率
,结合性质
可得,
,从而可得椭圆
的方程是
;(2)
的方程为
,
由
,整理得
.根据判别式大于零得
,由
,求出
代入椭圆方程化简得
,再利用弦长公式及
可得
,综上可得结果.
试题解析:(1)∵
,∴
.
又∵
,∴
,∴
,∴椭圆
的方程是
.
(2)设
,
,
,
的方程为
,
由
,整理得
.
由
,得
.
∵
,
,
∴
,
则
,
.
由点
在椭圆上,得
,化简得
. ①
又由
,即
,
将
,
代入得
,
化简,得
,则
,
,∴
. ②
由①,得
,联立②,解得
.
∴
或
,即
.
【题目】某高三年级在一次理科综合检测中统计了部分“住校生”和“非住校生”共20人的物理、化学的成绩制成下列散点图(物理成绩用
表示,化学成绩用
表示)(图1)和生物成绩的茎叶图(图2).
![]()
![]()
![]()
(图1)
住校生 非住校生
2 6
9 8 5 4 4 3 1 7 4 5 7 7 9 9
6 5 8 2 2 5 7
(图2)
(1)若物理成绩高于90分,我们视为“优秀”,那么以这20人为样本,从物理成绩优秀的人中随机抽取2人,求至少有1人是住校生的概率;
(2)若化学成绩高于80分,我们视为“优秀”,根据图1完成如下列联表,并判断是否有95%的把握认为优秀率与住校有关;
住校 | 非住校 | |
优 秀 | ||
非优秀 |
附:(
,其中
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(3)若生物成绩高于75分,我们视为“良好”,将频率视为概率,若从全年级学生中任选3人,记3人中生物成绩为“良好”的学生人数为随机变量
,求出
的分布列和数学期望.
【题目】某同学为了计算函数
图象与x轴,直线
,
所围成形状A的面积,采用“随机模拟方法”,用计算机分别产生10个在
上的均匀随机数
和10个在
上的均匀随机数
,其数据记录为如下表的前两行.
| 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
| 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
| 0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
(1)依据表格中的数据回答,在图形A内的点有多少个,分别是什么?
(2)估算图形A的面积.
【题目】某地煤气公司规定,居民每个月使用的煤气费由基本月租费、保险费和超额费组成.每个月的保险费为3元,当每个月使用的煤气量不超过am3时,只缴纳基本月租费c元;如果超过这个使用量,超出的部分按b元/m3计费.
(1)请写出每个月的煤气费y(元)关于该月使用的煤气量x(m3)的函数解析式;
(2)如果某个居民7~9月份使用煤气与收费情况如下表,请求出a,b,c,并画出函数图象;
月份 | 煤气使用量/m3 | 煤气费/元 |
7 | 4 | 4 |
8 | 10 | 10 |
9 | 16 | 19 |
其中,仅7月份煤气使用量未超过am3.