题目内容
已知数列{an},a1=1,an=n(an-1-an),递减等比数列{bn}满足:b2=
,其前三项和S2=
.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{an•bn}的前n项和为Tn,求Tn+an•bn+4bn2的最小值.
| 1 |
| 4 |
| 7 |
| 8 |
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{an•bn}的前n项和为Tn,求Tn+an•bn+4bn2的最小值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出
=
,由此能求出an=n.由已知条件推导出
,由此能求出bn=(
)n.
(Ⅱ)由an•bn=n•(
)n,利用错位相减法求出Tn=2-(n+2)•
.从而得到Tn+an•bn+4bn2=4(
-
)2+
≥
.由此能求出Tn+an•bn+4bn2的最小值.
| an+1 |
| n+1 |
| an |
| n |
|
| 1 |
| 2 |
(Ⅱ)由an•bn=n•(
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 4 |
| 7 |
| 4 |
| 7 |
| 4 |
解答:
解:(Ⅰ)∵数列{an},a1=1,an=n(an-1-an),
∴(n+1)an=nan+1,∴
=
,
∴{
}是常数列,且
=
=1,
∴an=n.
∵递减等比数列{bn}满足:b2=
,其前三项和S2=
,
∴
,解得
,或
(舍)
∴bn=(
)n.
(Ⅱ)∵an•bn=n•(
)n,
∴Tn=1•
+2•(
)2+3•(
)3+n•(
)n,①
Tn=1•(
)2+2•(
)3+3•(
)4+…+n•(
)n+1,②
①-②,得:
Tn=
+
+
+…+
-n•
=
-
=1-
-
.
∴Tn=2-(n+2)•
.
∴Tn+an•bn+4bn2=2-(n+2)•
+n•
+4•
=2-
+
=4(
-
)2+
≥
.
∴当且仅当(
)n=
,即n=2时取等号.
∴(n+1)an=nan+1,∴
| an+1 |
| n+1 |
| an |
| n |
∴{
| an |
| n |
| an |
| n |
| a1 |
| 1 |
∴an=n.
∵递减等比数列{bn}满足:b2=
| 1 |
| 4 |
| 7 |
| 8 |
∴
|
|
|
∴bn=(
| 1 |
| 2 |
(Ⅱ)∵an•bn=n•(
| 1 |
| 2 |
∴Tn=1•
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②,得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=
| ||||
1-
|
| n |
| 2n+1 |
=1-
| 1 |
| 2n |
| n |
| 2n+1 |
∴Tn=2-(n+2)•
| 1 |
| 2n |
∴Tn+an•bn+4bn2=2-(n+2)•
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 22n |
=2-
| 2 |
| 2n |
| 4 |
| 22n |
=4(
| 1 |
| 2n |
| 1 |
| 4 |
| 7 |
| 4 |
| 7 |
| 4 |
∴当且仅当(
| 1 |
| 2 |
| 1 |
| 4 |
点评:本题考查数列的通项公式的求法,考查数列的前n项的最小值的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目