题目内容

14.已知抛物线x2=4py(p>0)的焦点F,直线y=x+2与该抛物线交于A,B两点,M是线段AB的中点,过M作x轴的垂线,垂足为N,若$\overrightarrow{AF}$•$\overrightarrow{BF}$+($\overrightarrow{AF}$+$\overrightarrow{BF}$)•$\overrightarrow{FN}$=-1-5p2,则p的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 设A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2-4px-8p=0.利用韦达定理,结合向量的数量积公式,即可得出结论.

解答 解:设A(x1,y1),B(x2,y2),把y=x+2代入x2=4py得x2-4px-8p=0.
由韦达定理得x1+x2=4p,x1x2=-8p,所以M(2p,2p+2),所以N点(2p,0).
同理y1+y2=4p+4,y1y2=4
∵$\overrightarrow{AF}$•$\overrightarrow{BF}$+($\overrightarrow{AF}$+$\overrightarrow{BF}$)•$\overrightarrow{FN}$=-1-5p2
∴(-x1,p-y1)•(-x2,p-y2)+(-x1-x2,2p-y1-y2)•(2p,-p)=-1-5p2
代入整理可得4p2+4p-3=0,
∴p=$\frac{1}{2}$.
故选:B.

点评 本题考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网