题目内容
【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年高考总成绩由语数外三门统考科目和物理、化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为
、
、
、
共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%,选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到
、
、
、
、
、
、
,
八个分数区间,得到考生的等级成绩.某市高一学生共6000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩
大致服从正态分布
.
(1)求该市化学原始成绩在区间
的人数;
(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间
的人数,求
.
(附:若随机变量
,则
,
,
)
【答案】(1)4911人(2)![]()
【解析】
(1)由正态分布曲线的对称性计算概率;
(2)根据已知条件得等级成绩在区间
内的概率为
,则
的所有可能取值为0,1,2,3,且
,
,由二项分布概率公式可计算出概率.
解:(1)∵化学原始成绩
,
![]()
![]()
.
∴化学原始成绩在
的人数为
(人);
(2)因为以各等级人数所占比例作为各分数区间发生的概率,且等级成绩在区间
、
的人数所占比例分别为16%、24%,则随机抽取1人,其等级成绩在区间
内的概率为
.
所以从全省考生中随机抽取3人,则
的所有可能取值为0,1,2,3,且
,
.
【题目】已知椭圆C:
(
)的左右焦点分别为
,
.椭圆C上任一点P都满足
,并且该椭圆过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
的直线l与椭圆C交于A,B两点,过点A作x轴的垂线,交该椭圆于点M,求证:
三点共线.
【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如表所示.
甲每天生产的次品数/件 | 0 | 1 | 2 | 3 | 4 |
对应的天数/天 | 40 | 20 | 20 | 10 | 10 |
乙每天生产的次品数/件 | 0 | 1 | 2 | 3 |
对应的天数/天 | 30 | 25 | 25 | 20 |
(1)将甲每天生产的次品数记为
(单位:件),日利润记为
(单位:元),写出
与
的函数关系式;
(2)如果将统计的100天中产生次品量的频率作为概率,记
表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量
的分布列和数学期望.