题目内容

5.△ABC的顶点坐标是A(3,1,1),B(-5,2,1),C(-$\frac{8}{3}$,2,3),则它在yOz平面上射影图形的面积是(  )
A.4B.3C.2D.1

分析 先求出三个顶点在yOz平面上的射影分别,再由空间两点距离公式求出射影三角形三角长,由此能求出它在yOz平面上射影图形的面积.

解答 解:A(3,1,1),B(-5,2,1),C(-$\frac{8}{3}$,2,3),
三个顶点在yOz平面上的射影分别为A'(0,1,1),B'=(0,2,1),C'=(0,2,3),
则|A'B'|=1,|B'C'|=2,|A'C'|=$\sqrt{1+4}$=$\sqrt{5}$,
即有△A'B'C'为直角三角形,A'C'为斜边,
则面积为S=$\frac{1}{2}$×1×2=1.
故选:D.

点评 本题考查三角形在yOz平面上射影图形的面积的求法,是基础题,解题时要认真审题,注意空间中两点间距离公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网