题目内容
【题目】已知某算法的算法框图如图所示,若将输出的(x,y)值依次记为(x1 , y1),(x2 , y2),…,(xn , yn),…,则程序结束时,共输出(x,y)的组数为( ) ![]()
A.1006
B.1007
C.1008
D.1009
【答案】B
【解析】解:根据程序框图的运算流程,模拟程序的运行,可得: 当n=1时,输出第1对,
当n=3时,输出第2对,
…
当n=2013时,输出最后一对为第1007对,此时,n=2015,满足条件n>2014,结束.
所以程序结束时,共输出(x,y)的组数为1007.
故选:B.
【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.
练习册系列答案
相关题目
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程R(公里) | ||
80≤R<150 | 150≤R<250 | R≥250 | |
纯电动乘用车 | 3.5万元/辆 | 5万元/辆 | 6万元/辆 |
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 | 频数 | 频率 |
80≤R<150 | 2 | 0.2 |
150≤R<250 | 5 | x |
R≥250 | y | z |
合计 | M | 1 |
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.