题目内容
(1)证明:
<ln(1+x)<x(x∈R+);
(2)设{an}是首项为3,公差为2的等差数列,Sn为数列{an}的前n项倒数和,Tn=Sn-ln
,试证:0<Tn-T4n<
.
| x |
| 1+x |
(2)设{an}是首项为3,公差为2的等差数列,Sn为数列{an}的前n项倒数和,Tn=Sn-ln
| an |
| 3 |
| 8n |
分析:(1)构造函数f(x)=
-ln(1+x),g(x)=ln(1+x)-x,利用导数研究函数的单调性即可得出;
(2)利用(1)的结论及放缩法即可得出.
| x |
| 1+x |
(2)利用(1)的结论及放缩法即可得出.
解答:证明:(1)构造函数f(x)=
-ln(1+x),g(x)=ln(1+x)-x,
∵x∈R+,
∴f′(x)=
-
=-
<0,
∴函数f(x)在(0,+∞)上单调递减,
∴f(x)<f(0)=0,
∴
<ln(1+x).
∵x∈R+,
∴g′(x)=
-1=-
<0,
∴函数g(x)在(0,+∞)上单调递减,
∴g(x)<g(0)=0,
∴ln(1+x)<x.
∴
<ln(1+x)<x(x∈R+);
(2)由a1=3,d=2,得an=a1+(n-1)d=3+2(n-1)=2n+1.
则Sn=
+
+…+
=
+
+…+
,
Tn=Sn-ln
=Sn-
lnan.
则Tn-T4n=(Sn-
lnan)-(S4n-
lna4n)
=
ln
-(S4n-Sn)=
ln
-(
+
+…+
).
∵
<ln(1+x)<x,(x>0),
∴
<ln(2n+2)-ln(2n+1)=ln(1+
)<
,
<ln(2n+3)-ln(2n+2)=ln(1+
)<
,
…,
<ln(8n+1)-ln(8n)=ln(1+
)<
,
∴
+
+…+
<ln
<
+
+
+…+
,
一方面:
ln
>
(
+
+
+…+
)>
+
+…+
,
∴Tn-T4n>0.
另一方面:
ln
<
(
+
+
+
+…+
)<
(
+
)+
+
+…+
+
-
<
+
+…+
+
∴
ln
-(
+
+…+
)<
.
∴Tn-T4n<
.
综上可知:0<Tn-T4n<
.
| x |
| 1+x |
∵x∈R+,
∴f′(x)=
| (1+x)-x |
| (1+x)2 |
| 1 |
| 1+x |
| x |
| (1+x)2 |
∴函数f(x)在(0,+∞)上单调递减,
∴f(x)<f(0)=0,
∴
| x |
| 1+x |
∵x∈R+,
∴g′(x)=
| 1 |
| 1+x |
| x |
| 1+x |
∴函数g(x)在(0,+∞)上单调递减,
∴g(x)<g(0)=0,
∴ln(1+x)<x.
∴
| x |
| 1+x |
(2)由a1=3,d=2,得an=a1+(n-1)d=3+2(n-1)=2n+1.
则Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n+1 |
Tn=Sn-ln
| an |
| 1 |
| 2 |
则Tn-T4n=(Sn-
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| a4n |
| an |
| 1 |
| 2 |
| 8n+1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
| 1 |
| 8n+1 |
∵
| x |
| 1+x |
∴
| 1 |
| 2n+2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2n+2 |
| 1 |
| 2n+2 |
…,
| 1 |
| 8n+1 |
| 1 |
| 8n |
| 1 |
| 8n |
∴
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| 8n+1 |
| 8n+1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| 8n |
一方面:
| 1 |
| 2 |
| 8n+1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| 2n+4 |
| 1 |
| 8n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
| 1 |
| 8n+1 |
∴Tn-T4n>0.
另一方面:
| 1 |
| 2 |
| 8n+1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| 2n+4 |
| 1 |
| 8n |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
| 1 |
| 8n-1 |
| 1 |
| 8n+1 |
| 1 |
| 8n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
| 1 |
| 8n+1 |
| 3 |
| 8n |
∴
| 1 |
| 2 |
| 8n+1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2n+5 |
| 1 |
| 8n+1 |
| 3 |
| 8n |
∴Tn-T4n<
| 3 |
| 8n |
综上可知:0<Tn-T4n<
| 3 |
| 8n |
点评:本题考查了构造函数法、放缩法、利用导数研究函数的单调性、利用已经证明的结论解决问题等基本知识与基本方法.
练习册系列答案
相关题目