题目内容

已知正项数列{an}的前n项和为Sn,且Sn=(
an
2
2+
an
2

(1)求数列{an}的通项公式;
(2)若Tn=
a12+1
a12-1
+
a22+1
a22-1
+
a32+1
a32-1
+…+
an2+1
an2-1
,求证:Tn
an
2
+1.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由Sn=(
an
2
2+
an
2
,得4Sn=an2+2an,由此推导出an+1-an-2=0,从而能求出an=2n,n∈N*
(2)由
an2+1
an2-1
=
4n2+1
4n2-1
=1+
2
4n2-1
=1+
1
2n-1
-
1
2n+1
,利用分组求和法和裂项求和法能证明Tn
an
2
+1.
解答: 解:(1)∵Sn=(
an
2
2+
an
2

∴4Sn=an2+2an,4Sn+1=an+12+2an+1
4Sn+1-4Sn=4an+1=an+12-an2+2an+1-2an
(an+1+an)(an+1-an)-2(an+1+an)=0
(an+1+an)(an+1-an-2)=0
∵{an}是正项数列,∴an+1-an-2=0,
又∵a1=S1=
a12
4
+
a1
2
,解得a1=2,或a1=0,(舍).
∴数列{an}是首项为2、公差为2的等差数列,
∴an=2n,n∈N*
(2)∵
an2+1
an2-1
=
4n2+1
4n2-1
=1+
2
4n2-1
=1+
1
2n-1
-
1
2n+1

∴Tn=n+(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=n+1-
1
2n+1

<n+1
=
an
2
+1

∴Tn
an
2
+1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法和分组求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网