题目内容

精英家教网函数y=Asin(ωx+φ)(ω>0,|φ|<
π
2
,x∈R)的部分图象如图所示,则函数表达式为(  )
A、y=2sin(
π
2
x+
π
4
)
B、y=2sin(
π
2
x-
π
4
)
C、y=2sin(
π
4
x+
π
4
)
D、y=2sin(
π
4
x-
π
4
)
分析:通过函数的图象求出A,周期T,利用周期公式求出ω,图象经过(3,0)以及φ的范围,求出φ的值,得到函数的解析式.
解答:解:由函数的图象可知A=2,T=2×(5-1)=8,所以T=
ω
,ω=
π
4
,因为函数的图象经过(3,0),所以0=2sin(
π
4
×3+φ
),又|φ|<
π
2
,所以φ=
π
4

所以函数的解析式为:y=2sin(
π
4
x+
π
4
)

故选C.
点评:本题是基础题,考查三角函数的图象求函数的解析式的方法,考查学生的视图能力,计算能力,常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网