题目内容

3.已知双曲线T:$\frac{{x}^{2}}{4}$-y2=1,过点B(-2,0)的直线交双曲线T于点A(点A不为双曲线顶点),若AB中点Q在直线y=x上,点P为双曲线T上异于A,B的任意一点且不为双曲线的顶点,直线AP,BP分别交直线y=x于M,N两点,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的值为(  )
A.-$\frac{8}{3}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.-8

分析 求出A的坐标,设点P(x0,y0)为曲线上任一点,得到直线AP的方程,直线BP的方程,可得M,N的坐标,由此即可得出结论.

解答 解:∵AB中点Q在直线y=x上,B(-2,0),
∴A($\frac{10}{3}$,$\frac{4}{3}$)
设点P(x0,y0)为曲线上任一点,
则直线AP的方程是y-$\frac{4}{3}$=$\frac{{y}_{0}-\frac{4}{3}}{{x}_{0}-\frac{10}{3}}$(x-$\frac{10}{3}$),
与直线y=x联立得xM=yM=$\frac{10{y}_{0}-4{x}_{0}}{3{y}_{0}-3{x}_{0}+6}$,
同理得:直线BP的方程是y=$\frac{{y}_{0}}{{x}_{0}+2}$(x+2),
与直线y=x联立得xN=yN=$\frac{2{y}_{0}}{{x}_{0}-{y}_{0}+2}$,
∵$\frac{{{x}_{0}}^{2}}{4}$-y02=1,
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=xMxN+yMyN=2×$\frac{10{y}_{0}-4{x}_{0}}{3{y}_{0}-3{x}_{0}+6}$×$\frac{2{y}_{0}}{{x}_{0}-{y}_{0}+2}$=-$\frac{8}{3}$.
故选A.

点评 本题考查直线方程的求法,考查向量的数量积,解题时要认真审题,注意中点坐标公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网