题目内容

20.数列{an}满足an+1=$\left\{{\begin{array}{l}{2{a_n},0≤{a_n}<\frac{1}{2}}\\{2{a_n}-1,\frac{1}{2}≤{a_n}<1}\end{array}}$,若a1=$\frac{6}{7}$,则a2016的值是(  )
A.$\frac{6}{7}$B.$\frac{5}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

分析 由数列{an}满足an+1=$\left\{{\begin{array}{l}{2{a_n},0≤{a_n}<\frac{1}{2}}\\{2{a_n}-1,\frac{1}{2}≤{a_n}<1}\end{array}}$,a1=$\frac{6}{7}$,可得an+3=an

解答 解:∵数列{an}满足an+1=$\left\{{\begin{array}{l}{2{a_n},0≤{a_n}<\frac{1}{2}}\\{2{a_n}-1,\frac{1}{2}≤{a_n}<1}\end{array}}$,a1=$\frac{6}{7}$,
∴a2=2a1-1=$\frac{5}{7}$,a3=2a2-1=$\frac{3}{7}$,a4=2a3=$\frac{6}{7}$,…,
∴an+3=an
则a2016=a671×3+3=a3=$\frac{3}{7}$.
故选:C.

点评 本题考查了分段数列的性质、分类讨论方法、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网