ÌâÄ¿ÄÚÈÝ
18£®ÎªÁ˵÷²éÿÌì΢ÐÅÓû§Ê¹ÓÃ΢ÐŵÄʱ¼ä£¬Ä³¾Ïú»¯×±Æ··Ö΢ÉÌÔÚÒ»¹ã³¡Ëæ»ú²É·ÃÄÐÐÔ¡¢Å®ÐÔÓû§¸÷50Ãû£¬ÆäÖÐÿÌìÍæÎ¢Ðų¬¹ý6СʱµÄÓû§ÁÐΪ¡°Î¢Ðſء±£¬·ñÔò³ÆÆäΪ¡°·Ç΢Ðſء±£¬µ÷²é½á¹ûÈçÏ£º| ΢ÐÅ¿Ø | ·Ç΢ÐÅ¿Ø | ºÏ¼Æ | |
| ÄÐÐÔ | 26 | 24 | 50 |
| Å®ÐÔ | 30 | 20 | 50 |
| ºÏ¼Æ | 56 | 44 | 100 |
£¨2£©ÏÖ´Óµ÷²éµÄÅ®ÐÔÓû§Öа´·Ö²ã³éÑùµÄ·½·¨Ñ¡³ö5ÈËÔùËÍÓªÑøÃæÄ¤¸÷1·Ý£¬ÔÙ´Ó³éÈ¡µÄÕâ5ÈËÖÐÔÙËæ»ú³éÈ¡3ÈËÔùËÍ200ÔªµÄ»¤·ôÆ·Ì××°£¬¼ÇÕâ3ÈËÖС°Î¢Ðſء±µÄÈËÊýΪX£¬ÊÔÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d
²Î¿¼Êý¾Ý£º
| P£¨K2¡Ýk0£© | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
·ÖÎö £¨1£©¸ù¾ÝÁÐÁª±íÖеÄÊý¾Ý¼ÆËã¹Û²âÖµK2£¬¶ÔÕÕÊý±íµÃ³ö½áÂÛ£»
£¨2£©ÒÀ¾ÝÌâÒâÖªXµÄ¿ÉÄÜȡֵ£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬ÔÙд³öXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûÖµ£®
½â´ð ½â£º£¨1£©¸ù¾ÝÁÐÁª±íÖеÄÊý¾Ý£¬¼ÆËã¹Û²âÖµK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$=$\frac{100{¡Á£¨26¡Á20-30¡Á24£©}^{2}}{56¡Á44¡Á50¡Á50}$¡Ö0.649£¼0.708£¬
ËùÒÔûÓÐ60%µÄ°ÑÎÕÈÏΪ¡°Î¢Ðſء±Óë¡°ÐÔ±ð¡±Óйأ»
£¨2£©ÒÀ¾ÝÌâÒâ¿ÉÖª£¬Ëù³éÈ¡µÄ5λŮÐÔÖУ¬¡°Î¢Ðſء±ÓÐ3ÈË£¬¡°·Ç΢Ðſء±ÓÐ2ÈË£¬
XµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£»
ÔòP£¨X=1£©=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$£¬
P£¨X=2£©=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$£¬
P£¨X=3£©=$\frac{{C}_{3}^{3}{•C}_{2}^{0}}{{C}_{5}^{3}}$=$\frac{1}{10}$£»
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º
| X | 1 | 2 | 3 |
| P | $\frac{3}{10}$ | $\frac{3}{5}$ | $\frac{1}{10}$ |
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑé¡¢¸ÅÂʺÍËæ»ú±äÁ¿·Ö²¼ÁÐÒÔ¼°ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 1»ò2 |
| A£® | $f£¨\frac{¦Ð}{3}£©£¼f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{5¦Ð}{6}£©$ | B£® | $f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{¦Ð}{3}£©£¼f£¨\frac{5¦Ð}{6}£©$ | C£® | $f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{5¦Ð}{6}£©£¼f£¨\frac{¦Ð}{3}£©$ | D£® | $f£¨\frac{5¦Ð}{6}£©£¼f£¨\frac{¦Ð}{4}£©£¼f£¨\frac{¦Ð}{3}£©$ |
| A£® | £¨-2£¬0£©¡È£¨2£¬+¡Þ£© | B£® | £¨-2£¬0£©¡È£¨0£¬2£© | C£® | £¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£© | D£® | £¨-¡Þ£¬-2£©¡È£¨0£¬2£© |