ÌâÄ¿ÄÚÈÝ

18£®ÎªÁ˵÷²éÿÌì΢ÐÅÓû§Ê¹ÓÃ΢ÐŵÄʱ¼ä£¬Ä³¾­Ïú»¯×±Æ··Ö΢ÉÌÔÚÒ»¹ã³¡Ëæ»ú²É·ÃÄÐÐÔ¡¢Å®ÐÔÓû§¸÷50Ãû£¬ÆäÖÐÿÌìÍæÎ¢Ðų¬¹ý6СʱµÄÓû§ÁÐΪ¡°Î¢Ðſء±£¬·ñÔò³ÆÆäΪ¡°·Ç΢Ðſء±£¬µ÷²é½á¹ûÈçÏ£º
΢ÐſطÇ΢ÐſغϼÆ
ÄÐÐÔ262450
Å®ÐÔ302050
ºÏ¼Æ5644100
£¨1£©¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÄÜ·ñÓÐ60%µÄ°ÑÎÕÈÏΪ¡°Î¢Ðſء±Óë¡°ÐÔ±ð¡±Óйأ¿
£¨2£©ÏÖ´Óµ÷²éµÄÅ®ÐÔÓû§Öа´·Ö²ã³éÑùµÄ·½·¨Ñ¡³ö5ÈËÔùËÍÓªÑøÃæÄ¤¸÷1·Ý£¬ÔÙ´Ó³éÈ¡µÄÕâ5ÈËÖÐÔÙËæ»ú³éÈ¡3ÈËÔùËÍ200ÔªµÄ»¤·ôÆ·Ì××°£¬¼ÇÕâ3ÈËÖС°Î¢Ðſء±µÄÈËÊýΪX£¬ÊÔÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

·ÖÎö £¨1£©¸ù¾ÝÁÐÁª±íÖеÄÊý¾Ý¼ÆËã¹Û²âÖµK2£¬¶ÔÕÕÊý±íµÃ³ö½áÂÛ£»
£¨2£©ÒÀ¾ÝÌâÒâÖªXµÄ¿ÉÄÜȡֵ£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬ÔÙд³öXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÁÐÁª±íÖеÄÊý¾Ý£¬¼ÆËã¹Û²âÖµK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$=$\frac{100{¡Á£¨26¡Á20-30¡Á24£©}^{2}}{56¡Á44¡Á50¡Á50}$¡Ö0.649£¼0.708£¬
ËùÒÔûÓÐ60%µÄ°ÑÎÕÈÏΪ¡°Î¢Ðſء±Óë¡°ÐÔ±ð¡±Óйأ»
£¨2£©ÒÀ¾ÝÌâÒâ¿ÉÖª£¬Ëù³éÈ¡µÄ5λŮÐÔÖУ¬¡°Î¢Ðſء±ÓÐ3ÈË£¬¡°·Ç΢Ðſء±ÓÐ2ÈË£¬
XµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£»
ÔòP£¨X=1£©=$\frac{{C}_{3}^{1}{•C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$£¬
P£¨X=2£©=$\frac{{C}_{3}^{2}{•C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{3}{5}$£¬
P£¨X=3£©=$\frac{{C}_{3}^{3}{•C}_{2}^{0}}{{C}_{5}^{3}}$=$\frac{1}{10}$£»
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º

 X1
 P $\frac{3}{10}$ $\frac{3}{5}$ $\frac{1}{10}$
XµÄÊýѧÆÚÍûΪEX=1¡Á$\frac{3}{10}$+2¡Á$\frac{3}{5}$+3¡Á$\frac{1}{10}$=$\frac{9}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑé¡¢¸ÅÂʺÍËæ»ú±äÁ¿·Ö²¼ÁÐÒÔ¼°ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø