题目内容

1.如图,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.
(Ⅰ)求p的值;
(Ⅱ)求动点M的轨迹方程.

分析 (Ⅰ)由点A的横坐标为2,可得点A的坐标为(2,2),代入y2=2px,解p.
(Ⅱ)设$C({\frac{y_1^2}{2},{y_1}})$,$D({\frac{y_2^2}{2},{y_2}})$,y1≠0,y2≠0.切线l1:$y-{y_1}=k({x-\frac{y_1^2}{2}})$,代入y2=2x,求出$k=\frac{1}{y_1}$,得到l1方程为$y=\frac{1}{y_1}x+\frac{y_1}{2}$,同理l2方程为$y=\frac{1}{y_2}x+\frac{y_2}{2}$,联立直线方程组,求出M,利用CD方程为x0x+y0y=8,联立方程$\left\{\begin{array}{l}{y^2}=2x\\{x_0}x+{y_0}y=8\end{array}\right.$利用韦达定理,代入$\left\{\begin{array}{l}x=\frac{{{y_1}•{y_2}}}{2}\\ y=\frac{{{y_1}+{y_2}}}{2}\end{array}\right.$可知M(x,y)满足$\left\{\begin{array}{l}x=-\frac{8}{x_0}\\ y=-\frac{y_0}{x_0}\end{array}\right.$,求出动点M的轨迹方程.

解答 解:(Ⅰ)由点A的横坐标为2,可得点A的坐标为(2,2),
代入y2=2px,解得p=1,
(Ⅱ)设$C({\frac{y_1^2}{2},{y_1}})$,$D({\frac{y_2^2}{2},{y_2}})$,y1≠0,y2≠0.
切线l1:$y-{y_1}=k({x-\frac{y_1^2}{2}})$,
代入y2=2x得$k{y^2}-2y+2{y_1}-ky_1^2=0$,由△=0解得$k=\frac{1}{y_1}$,
∴l1方程为$y=\frac{1}{y_1}x+\frac{y_1}{2}$,同理l2方程为$y=\frac{1}{y_2}x+\frac{y_2}{2}$,
联立$\left\{\begin{array}{l}y=\frac{1}{y_1}x+\frac{y_1}{2}\\ y=\frac{1}{y_2}x+\frac{y_2}{2}\end{array}\right.$,解得$\left\{\begin{array}{l}x=\frac{{{y_1}•{y_2}}}{2}\\ y=\frac{{{y_1}+{y_2}}}{2}\end{array}\right.$,
∵CD方程为x0x+y0y=8,其中x0,y0满足$x_0^2+y_0^2=8$,${x_0}∈[{2,2\sqrt{2}}]$,
联立方程$\left\{\begin{array}{l}{y^2}=2x\\{x_0}x+{y_0}y=8\end{array}\right.$得${x_0}{y^2}+2{y_0}y-16=0$,则$\left\{\begin{array}{l}{y_1}+{y_2}=-\frac{{2{y_0}}}{x_0}\\{y_1}•{y_2}=-\frac{16}{x_0}\end{array}\right.$,
代入$\left\{\begin{array}{l}x=\frac{{{y_1}•{y_2}}}{2}\\ y=\frac{{{y_1}+{y_2}}}{2}\end{array}\right.$可知M(x,y)满足$\left\{\begin{array}{l}x=-\frac{8}{x_0}\\ y=-\frac{y_0}{x_0}\end{array}\right.$,
代入$x_0^2+y_0^2=8$得$\frac{x^2}{8}-{y^2}=1$,
考虑到${x_0}∈[{2,2\sqrt{2}}]$,知$x∈[{-4,-2\sqrt{2}}]$.
∴动点M的轨迹方程为$\frac{x^2}{8}-{y^2}=1$,$x∈[{-4,-2\sqrt{2}}]$.

点评 本题考查圆的方程的综合应用,动点的轨迹方程的求法,直线与圆锥曲线的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网