题目内容

16.求极限$\underset{lim}{x→0}$$\frac{{∫}_{0}^{x}sintdt}{xtanx}$.

分析 求定积分${∫}_{0}^{x}$sintdt=1-cosx,从而利用洛比达法则求极限$\underset{lim}{x→0}$$\frac{1-cosx}{xtanx}$即可.

解答 解:${∫}_{0}^{x}$sintdt=-cost$|\left.\begin{array}{l}{x}\\{0}\end{array}\right.$=1-cosx,
故$\underset{lim}{x→0}$$\frac{{∫}_{0}^{x}sintdt}{xtanx}$
=$\underset{lim}{x→0}$$\frac{1-cosx}{xtanx}$
=$\underset{lim}{x→0}$$\frac{cosx(1-cosx)}{xsinx}$
=$\underset{lim}{x→0}$$\frac{1-cosx}{xsinx}$
=$\underset{lim}{x→0}$$\frac{sinx}{sinx+xcosx}$
=$\underset{lim}{x→0}$$\frac{cosx}{cosx+cosx-xsinx}$=$\frac{1}{2}$.

点评 本题考查了定积分的求法及洛比达法则的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网