题目内容

函数f(x)=
x2+4
+
(x-2)2+1
的最小值是
 
考点:两点间距离公式的应用,函数的最值及其几何意义
专题:函数的性质及应用
分析:若x<0,则f(x)>f(-x).因而,当f(x)取最小值时,必然有;若x≥0,可作线段AB=2,AC⊥AB,DB⊥AB,且AC=2,BD=1.对于AB上的任意一点O,令OA=x,则OC=
x2+4
,OD=
(x-2)2+1
,那么,问题转化为在AB上求一点O,使OC+OD最小.
解答: 解:如图,作线段AB=4,AC⊥AB,DB⊥AB,且AC=2,BD=1,
对于AB上的任意一点O,令OA=x,则
OC=
x2+4
,OD=
(x-2)2+1

设点C关于AB的对称点为E,则DE与AB的交点即为点O.
此时,OC+OD=OE+OD=DE,
作EF∥AB与DB的延长线交于F,
在Rt△DEF中,易知EF=AB=2,DF=3,
所以DE=
22+32
=
13

因此,函数f(x)=
x2+4
+
(x-2)2+1
的最小值是
13

故答案为:
13
点评:本题考查了函数的最值问题,解题的关键是将最值问题转化为轴对称-最短路线问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网