题目内容
已知圆
:
+
=1,圆
与圆
关于直线
对称,则圆
的方程为( )
| A. | B. |
| C. | D. |
B
解析试题分析:由两圆关于直线
对称可知两圆心
与
关于直线
对称,且半径相等,因
(-1,1)关于直线
的对称点
(2,-2),故圆
:
+
=1,选B.
考点:圆的标准方程.
练习册系列答案
相关题目
若点
和点
到直线
的距离依次为
和
,则这样的直线有( )
| A. | B. | C. | D. |
垂直于直线
与圆
相切于第一象限的直线方程是( )
| A. | B. | C. | D. |
若直线y=kx与圆
-4x+3=0的两个交点关于直线x+y+b=0对称,则 ( )
| A.k=1,b=-2 | B.k=1,b=2 |
| C.k=-1,b=2 | D.k=-1,b=-2 |
在平面直角坐标系
中,直线
与圆
相交于
两点,则弦
的长等于( )
| A. | B. | C. | D. |
在平面直角坐标系
中,圆
的方程为
,直线
的方程为
,则直线
与圆
的位置关系是( )
| A.相离 | B.相交 | C.相切 | D.相切或相交 |
圆
与直线
相切于第三象限,则
的值是( ).
| A. | B. | C. | D. |
直线
被圆
所截得的弦长为( )
| A. | B. | C. | D. |