题目内容
【题目】已知
为数列
的前
项和,
,
,若关于正整数
的不等式
的解集中的整数解有两个,则正实数
的取值范围为( )
A.
B.
C.
D. ![]()
【答案】A
【解析】分析:由2Sn=(n+1)an,n≥2时,2Sn﹣1=nan﹣1,则2an=2(Sn﹣Sn﹣1),整理得:
,则
,可得:an=n.不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,0<n≤2t,关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,即可得出正实数t的取值范围.
详解:∵a1=1,2Sn=(n+1)an,
∴n≥2时,2Sn﹣1=nan﹣1,
∴2an=2(Sn﹣Sn﹣1)=(n+1)an﹣nan﹣1,整理得:
,
∴![]()
∴an=n.
不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,
∴0<n≤2t,
关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,
可知n=1,2.
∴1≤t<
,
故答案为:A.
练习册系列答案
相关题目