题目内容
复数的虚部为____________.
设椭圆+=1(a>b>0)的离心率为e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)
A.必在圆x2+y2=2内 B.必在圆x2+y2=2上
C.必在圆x2+y2=2外 D.以上三种情形都有可能
设双曲线(a>0,b>0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )
A. B.2 C. D.
已知坐标原点为O,A,B为抛物线上异于O的两点,且,则的最小值为
A4 B8 C16 D64
如图所示,四棱锥P-ABCD中,底面ABCD为直角梯形,,点E在棱PA上,且PE=2EA.
(1) 求异面直线PA与CD所成的角;
(2) 求证:PC平行平面EBD;
(3) 求二面角A-BE-D的平面角的余弦值。
若的值为 .
在正方体的8个顶点中任意选择4个顶点,它们可能是如下几何图形的4个顶点,这些几何图形是 .(写出所有正确结论的编号).
①梯形;
②矩形;
③有三个面为等腰直角三角形,有一个面为等边
三角形的四面体;
④每个面都是等边三角形的四面体;
⑤每个面都是等腰直角三角形的四面体.
已知是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:
①若,,则 ②若
③若 ④若
其中正确命题的序号有____________。
已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(Ⅰ)求f()的值;
(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.