题目内容
(1)已知tanx=-2,求下列各式的值:①(2)求值:sin(-1071°)sin99°+sin(-171°)sin(-261°)-2sin(-420°)+tan(-330°).
【答案】分析:(1)把已知tanx=-2代入 ①
=
,运算求得结果.把已知tanx=-2代入 ②2sin2x-3cos2x=
=
,运算求得结果.
(2)利用诱导公式把要求的式子化为sin9°cos9°-sin9°sin99°+2sin60°+tan30°,运算求得结果.
解答:解:(1)∵已知tanx=-2,∴①
=
=
=
,
②2sin2x-3cos2x=
=
=
=1.
(2)sin(-1071°)sin99°+sin(-171°)sin(-261°)-2sin(-420°)+tan(-330°)
=sin(-3×360°+9°)cos9°+sin(9°-180°)sin(-360°+99°)-2sin(-360°-60°)+tan(-360°+30°)
=sin9°cos9°-sin9°sin99°+2sin60°+tan30°=2sin60°+tan30°=
+
=
.
点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于中档题.
(2)利用诱导公式把要求的式子化为sin9°cos9°-sin9°sin99°+2sin60°+tan30°,运算求得结果.
解答:解:(1)∵已知tanx=-2,∴①
②2sin2x-3cos2x=
(2)sin(-1071°)sin99°+sin(-171°)sin(-261°)-2sin(-420°)+tan(-330°)
=sin(-3×360°+9°)cos9°+sin(9°-180°)sin(-360°+99°)-2sin(-360°-60°)+tan(-360°+30°)
=sin9°cos9°-sin9°sin99°+2sin60°+tan30°=2sin60°+tan30°=
点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于中档题.
练习册系列答案
相关题目