题目内容

4.已知数列{an}中,${a_1}=\frac{3}{4}$,${a_{n+1}}=\frac{1}{{2-{a_n}}}$(n∈N*).
(1)求证:数列$\{\frac{1}{{{a_n}-1}}\}$是等差数列,并求数列{an}的通项公式;
(2)设${b_n}+{a_n}=1(n∈{N^*})$,Sn=b1b2+b2b3+…+bnbn+1,求Sn

分析 (1)利用数列的通项公式,结合等差数列的定义,转化求解证明数列是等差数列.然后求解通项公式.
(2)求出数列的通项公式,利用裂项消项法求解数列的和即可.

解答 解:(1)证明:∵${a_1}=\frac{3}{4}$,${a_{n+1}}=\frac{1}{{2-{a_n}}}$(n∈N*),
∴$\frac{1}{{{a_1}-1}}=-4,\frac{1}{{{a_{n+1}}-1}}=\frac{1}{{\frac{1}{{2-{a_n}}}-1}}=\frac{{2-{a_n}}}{{{a_n}-1}}=\frac{1}{{{a_n}-1}}-1$,
即$\frac{1}{{{a_{n+1}}-1}}-\frac{1}{{{a_n}-1}}=-1$.
∴$\{\frac{1}{{{a_n}-1}}\}$是首项为-4,公差为-1的等差数列.
从而$\frac{1}{{{a_n}-1}}=-n-3⇒{a_n}=1-\frac{1}{n+3}$.
(2)∵${b_n}+{a_n}=1(n∈{N^*})$,由(1)知${a_n}=1-\frac{1}{n+3}$.
∴${b_n}=\frac{1}{n+3},{b_k}{b_{k+1}}=\frac{1}{k+3}-\frac{1}{k+4}$(k=1,2,3,…)
∴${S_n}={b_1}{b_2}+{b_2}{b_3}+…+{b_n}{b_{n+1}}=(\frac{1}{4}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+…+(\frac{1}{n+3}-\frac{1}{n+4})=\frac{1}{4}-\frac{1}{n+4}$,
即${S_n}=\frac{1}{4}-\frac{1}{n+4}$.

点评 本题考查数列的通项公式以及数列求和,递推关系式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网