题目内容

16.设函数f(x)=1+$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b)的最大值为M,最小值为m,则M+m=2.

分析 设g(x)=$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b),则g(x)是奇函数,可得g(x)max+g(x)min=0,根据f(x)=1+$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b)的最大值为M,最小值为m,可得M-1+m-1=0,即可求出M+m.

解答 解:设g(x)=$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b),则g(x)是奇函数,
∴g(x)max+g(x)min=0,
∵f(x)=1+$\frac{{x}^{\frac{1}{3}}+x}{{x}^{\frac{2}{3}}+{x}^{2}}$(x∈[-b,-a]∪[a,b],其中a<b)的最大值为M,最小值为m,
∴M-1+m-1=0
∴M-m=2.
故答案为:2.

点评 本题考查函数的奇偶性与最值,考查学生的计算能力,确定函数的奇偶性是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网