题目内容

16.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{(-1)^{n-1}{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

分析 (I)利用等差数列与等比数列的通项公式即可得出.
(II))cn=$\frac{(-1)^{n-1}{a}_{n}}{{b}_{n}}$=$\frac{(-1)^{n-1}(2n-3)}{{2}^{n}}$,利用“错位相加法”与等比数列的求和公式即可得出.

解答 解:(I)设等差数列{an}的公差为d,等比数列{bn}的公比q大于0,又b1=-2a1=2,a3+b2=-1,S3+2b3=7.
∴a1=-1,-1+2d+2q=-1,3×(-1)+3d+2×2q2=7,
解得d=-2,q=2.
∴an=-1+2(n-1)=2n-3,bn=2n
(II)cn=$\frac{(-1)^{n-1}{a}_{n}}{{b}_{n}}$=$\frac{(-1)^{n-1}(2n-3)}{{2}^{n}}$,
∴数列{cn}的前n项和Tn=$\frac{-1}{2}$-$\frac{1}{{2}^{2}}$+$\frac{3}{{2}^{3}}$-$\frac{5}{{2}^{4}}$+…+$\frac{(-1)^{n-2}(2n-5)}{{2}^{n-1}}$+$\frac{(-1)^{n-1}(2n-3)}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=-$\frac{1}{{2}^{2}}$-$\frac{1}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{(-1)^{n-2}(2n-5)}{{2}^{n}}$+$\frac{(-1)^{n-1}(2n-3)}{{2}^{n+1}}$,
∴$\frac{3}{2}$Tn=-$\frac{1}{2}$-$\frac{1}{2}$+$\frac{1}{{2}^{2}}$-$\frac{1}{{2}^{3}}$+…+(-1)n-1×$\frac{1}{{2}^{n-1}}$+$\frac{(-1)^{n-1}(2n-3)}{{2}^{n+1}}$=$-\frac{1}{2}$+$\frac{-\frac{1}{2}[1-(-\frac{1}{2})^{n-1}]}{1-(-\frac{1}{2})}$+$\frac{(-1)^{n-1}(2n-3)}{{2}^{n+1}}$,
∴Tn=-$\frac{5}{9}$+$\frac{2}{9}(-\frac{1}{2})^{n-1}$+$\frac{(-1)^{n-1}(2n-3)}{3×{2}^{n}}$.

点评 本题考查了“错位相加法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网