题目内容

19.定义:f1(x)=f(x),当n≥2且x∈N*时,fn(x)=f(fn-1(x)),对于函数f(x)定义域内的x0,若正在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n~周期点,已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是①②③(写出所有正确命题的编号)
①1是f(x)的一个3~周期点;
②3是点$\frac{1}{2}$的最小正周期;
③对于任意正整数n,都有fn(${\frac{2}{3}}$)=$\frac{2}{3}$;
④若x0∈($\frac{1}{2}$,1],则x0是f(x)的一个2~周期点.

分析 根据已知中点x0的最小正周期,x0称为f(x)的n~周期点的定义,逐一分析四个结论的真假可得答案.

解答 解:f1(1)=f(1)=0,f2(1)=f(f1(1))=f(0)=$\frac{1}{2}$,f3(1)=f(f2(1))=f($\frac{1}{2}$)=1,
故①1是f(x)的一个3~周期点,正确;
f1($\frac{1}{2}$)=f($\frac{1}{2}$)=1,f2($\frac{1}{2}$)=f(f1($\frac{1}{2}$))=f(1)=0,f3($\frac{1}{2}$)=f(f2($\frac{1}{2}$))=f(0)=$\frac{1}{2}$,
故②3是点$\frac{1}{2}$的最小正周期,正确;
由已知中的图象可得:f(${\frac{2}{3}}$)=$\frac{2}{3}$,
故f1(${\frac{2}{3}}$)=f(${\frac{2}{3}}$)=${\frac{2}{3}}$,f2(${\frac{2}{3}}$)=f(f1(${\frac{2}{3}}$))=f(${\frac{2}{3}}$)=${\frac{2}{3}}$,f3(${\frac{2}{3}}$)=f(f2(${\frac{2}{3}}$))=f(${\frac{2}{3}}$)=${\frac{2}{3}}$,…
故③对于任意正整数n,都有fn(${\frac{2}{3}}$)=$\frac{2}{3}$,正确;
④若x0=1,则x0∈($\frac{1}{2}$,1],但x0是f(x)的一个3~周期点,故错误.
故答案为:①②③

点评 本题以命题的真假判断与应用为载体,考查了新定义点x0的最小正周期,x0称为f(x)的n~周期点,正确理解新定义,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网