题目内容

7.己知函数f(x)=x3+2x2f'(1)+2,函数f(x)在点(2,f(2))的切线的倾斜角为α,则sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值为(  )
A.$\frac{9}{17}$B.$\frac{20}{17}$C.$\frac{3}{16}$D.$\frac{21}{19}$

分析 对函数f(x)求导,令x=1求出f′(1)的值,再求出f′(2)的值即为tanα,利用诱导公式化简sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α),弦化切求值即可.

解答 解:∵函数f(x)=x3+2x2f'(1)+2,
∴f′(x)=3x2+4xf′(1),
∴f′(1)=3+4f′(1),
解得f′(1)=-1,
∴f(x)=x3-2x2+2,
∴f′(2)=3×22-4×2=4,
函数f(x)在点(2,f(2))的切线的斜率为tanα=4,
∴sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)=sin2α-cosα•(-sinα)
=$\frac{{sin}^{2}α+sinαcosα}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{{tan}^{2}α+tanα}{{tan}^{2}α+1}$
=$\frac{{4}^{2}+4}{{4}^{2}+1}$
=$\frac{20}{17}$.
故选:B.

点评 本题考查了函数导数的应用问题,也考查了诱导公式以及三角函数求值问题,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网