题目内容
13.参数方程$\left\{\begin{array}{l}{x=sin\frac{α}{2}+cos\frac{α}{2}}\\{y=\sqrt{2+sinα}}\end{array}\right.$(α为参数)表示的普通方程是y2-x2=1(-$\sqrt{2}$≤x≤$\sqrt{2}$,1≤y≤$\sqrt{3}$).分析 分别计算x2,y2,两式相减消去参数即可得到普通方程,根据三角函数的性质求出x,y的范围.
解答 解;∵$\left\{\begin{array}{l}{x=sin\frac{α}{2}+cos\frac{α}{2}}\\{y=\sqrt{2+sinα}}\end{array}\right.$,∴x2=sin2$\frac{α}{2}$+cos2$\frac{α}{2}$+2sin$\frac{α}{2}$cos$\frac{α}{2}$=1+sinα.y2=2+sinα.
∴y2-x2=1.
∵sinα∈[-1,1],∴1+sinα∈[0,2],2+sinα∈[1,3].
∴-$\sqrt{2}≤$x$≤\sqrt{2}$.1$≤y≤\sqrt{3}$.
故答案为:y2-x2=1(-$\sqrt{2}≤x≤\sqrt{2}$,1≤y$≤\sqrt{3}$).
点评 本题考查了参数方程与普通方程的转化,求出x,y的范围是关键.
练习册系列答案
相关题目
13.设f(x)是定义域为R,最小正周期为3π的函数,且在区间(-π,2π]上的表达式为f(x)=$\left\{\begin{array}{l}{sinx(0≤x≤2π)}\\{cosx(-π<x<0)}\end{array}\right.$,则f(-$\frac{308π}{3}$)+f($\frac{601π}{6}$)=( )
| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
4.书架上有三本数学书和两本语文书,某同学两次分别从书架各取出一本书,取后不放回,若第一次从书架取出一本数学书记为事件A,第二次从书架取出一本数学书记为事件B,那么第一次取得数学书的条件下第二次也取得数学书的概率p(B|A)的值是( )
| A. | $\frac{3}{10}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
18.如图所示的几何体的左视图是( )

| A. | B. | C. | D. |
5.到点(-4,0)与到直线x=-$\frac{25}{4}$的距离之比为$\frac{4}{5}$的动点的轨迹方程是$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.
3.定义在R上的函数f(x)满足:f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}{2x,x∈(-1.1]}\\{-{x}^{2}+2x+1,x∈(1,3]}\\{\;}\end{array}\right.$,当x∈[0,+∞)时,方程f(x)-4xa=0(a>0)有且只有3个不等实根,则实数a的值为(e是自然对数底数)( )
| A. | $\frac{1}{{2}^{8}eln2}$ | B. | $\frac{1}{{2}^{9}}$ | C. | $\frac{e}{{2}^{8}ln2}$ | D. | $\frac{e}{{2}^{9}}$ |