题目内容
(14分) 已知点是
且
(1)设实数t满足=0,求t的值;
(2)试用,表示。
(14分)
(1)
(2)
(本小题满分14分)已知、是椭圆的两个焦点,O为坐标原点,点在椭圆上,线段与轴的交点满足;⊙O是以F1F2为直径的圆,一直线l:与⊙O相切,并与椭圆交于不同的两点A、B.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当且满足时,求△AOB面积S的取值范围.
(本小题满分14分)
已知点是圆上任意一点,点与点关于原点对称。线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)斜率为的直线与曲线交于两点,若(为坐标原点),试求直线在轴上截距的取值范围.
(本题14分)已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+().
(1)求数列和的通项公式;
(2)若数列{前项和为,问的最小正整数是多少? .
(本小题满分14分) 已知点是⊙:上的任意一点,过作垂直轴于,动点满足.
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。