题目内容
【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2
,AC=BC,F 是AB上一点,且AF=
AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=
. ![]()
(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A﹣CFD的体积.
【答案】
(1)证明:依题AD⊥BD,
∵CE⊥平面ABD,∴CE⊥AD,
∵BD∩CE=E,
∴AD⊥平面BCE
(2)证明:Rt△BCE中,CE=
,BC=
,∴BE=2,
Rt△ABD中,AB=2
,AD=
,∴BD=3.
∴
.
∴AD∥EF,∵AD在平面CEF外,
∴AD∥平面CEF
(3)解:由(2)知AD∥EF,AD⊥ED,
且ED=BD﹣BE=1,
∴F到AD的距离等于E到AD的距离为1.
∴S△FAD=
=
.
∵CE⊥平面ABD,
∴VA﹣CFD=VC﹣AFD=
=
= ![]()
【解析】(1)依题AD⊥BD,CE⊥AD,由此能证明AD⊥平面BCE.(2)由已知得BE=2,BD=3.从而AD∥EF,由此能证明AD∥平面CEF.(3)由VA﹣CFD=VC﹣AFD,利用等积法能求出三棱锥A﹣CFD的体积.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想)的相关知识才是答题的关键.
练习册系列答案
相关题目