题目内容
【题目】如图,在直四棱柱
中,底面四边形
是直角梯形,其中
.
![]()
(Ⅰ)求证:直线
平面
;
(Ⅱ)试求三棱锥
的体积.
【答案】(Ⅰ)证明见解析;(Ⅱ)
.
【解析】试题分析:
(Ⅰ)要证线面垂直,一般先证线线垂直,可证得
是正方形,从而有
,再由勾股定理可证
,从而得
平面
,又得
,有了两个线线垂直,就可得线面垂直,(注意判定定理的条件要写全);
(Ⅱ)由体积性质可得
,即以
为底面,高为
的长,易得体积.
试题解析:
(Ⅰ)证明:在梯形ABCD内过C点作
交AD于点
,
因为由底面四边形ABCD是直角梯形,
所以
,
又
,
易知
,且
,
所以
,所以
又根据题意知
面ABCD,从而
,而
,
故
因为
,及已知可得
是正方形,从而
.
因为
,且
,
所以
面
(Ⅱ)解:
因三棱锥
与三棱锥
是相同的,故只需求三棱锥
的体积即可,
而
,且由
面ABCD可得
,又因为
,
所以有
平面
,即CE为三棱锥
的高.
故![]()
练习册系列答案
相关题目