题目内容
| AM |
| AP |
| PM |
| AB |
| AC |
| PA |
(2)求
| PA |
| PB |
| PC |
分析:易得M是BC的中点,P是三角形ABC的重心,进而得
•(
+
)=
•2
,由数量积的定义可得答案.
| PA |
| PB |
| PC |
| PA |
| PM |
解答:解:(Ⅰ)由于
=-
=-
=-
•
(
+
)
则
=-
(
+
)
(Ⅱ)在△PBC中,M为BC的中点,∴
=
(
+
)
设|
|=x
则
(
+
)=2
•
=2|
|•|
|•cosπ=-2x•(4-x)=2x2-8x
当x=2时,函数最小值为-8
| PA |
| AP |
| 2 |
| 3 |
| AM |
| 2 |
| 3 |
| 1 |
| 2 |
| AB |
| AC |
则
| PA |
| 1 |
| 3 |
| AB |
| AC |
(Ⅱ)在△PBC中,M为BC的中点,∴
| PM |
| 1 |
| 2 |
| PB |
| PC |
设|
| PA |
则
| PA• |
| PA |
| PC |
| PA |
| PM |
| PA |
| PM |
当x=2时,函数最小值为-8
点评:本题考查向量加减混合运算及几何意义,属基础题.
练习册系列答案
相关题目