ÌâÄ¿ÄÚÈÝ
6£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}x=12cos¦È\\ y=4sin¦È\end{array}\right.$£¨²ÎÊý¦È¡ÊR£©£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µãQµÄ¼«×ø±êΪ$£¨4\sqrt{2}£¬\frac{¦Ð}{4}£©$£®£¨1£©½«ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Çó³öµãQµÄÖ±½Ç×ø±ê£»
£¨2£©ÉèPΪÇúÏßC1Éϵĵ㣬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®
·ÖÎö £¨1£©ÀûÓü«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯µÄ·½·¨£¬¿ÉµÃ½áÂÛ£»
£¨2£©ÀûÓòÎÊý·½³Ì£¬½áºÏÈý½Çº¯Êý֪ʶ£¬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®
½â´ð ½â£º£¨1£©$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µÃ$\frac{1}{2}¦Ñcos¦È-\frac{{\sqrt{3}}}{2}¦Ñsin¦È=3$£¬
¹ÊÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$x-\sqrt{3}y-6=0$£¬
µãQµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£®
£¨2£©ÉèP£¨12cos¦È£¬4sin¦È£©£¬¹ÊPQÖеãM£¨2+6cos¦È£¬2+2sin¦È£©£¬C2µÄÖ±Ïß·½³ÌΪ$x-\sqrt{3}y-6=0$£¬
µãMµ½C2µÄ¾àÀë$d=\frac{{|2+6cos¦È-\sqrt{3}£¨2+2sin¦È£©-6|}}{2}$=$|3cos¦È-\sqrt{3}sin¦È-2-\sqrt{3}|$
=$|2\sqrt{3}cos£¨¦È+\frac{¦Ð}{6}£©-2-\sqrt{3}|¡Ý|2\sqrt{3}-2-\sqrt{3}|=2-\sqrt{3}$£¬
PQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ$2-\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Èç¹ûÊä³öT=6£¬ÄÇôÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©

| A£® | k£¼32 | B£® | k£¼33 | C£® | k£¼64 | D£® | k£¼65 |
11£®ÉèF1£¬F2·Ö±ðΪÍÖÔ²C1£º$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1£¨{a_1}£¾{b_1}£¾0£©$ÓëË«ÇúÏßC2£º$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1£¨{a_2}£¾0£¬{b_2}£¾0£©$µÄ¹«¹²½¹µã£¬ËüÃÇÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãM£¬¡ÏF1MF2=90¡ã£¬ÈôÍÖÔ²µÄÀëÐÄÂÊ${e_1}=\frac{3}{4}$£¬ÔòË«ÇúÏßC2µÄÀëÐÄÂÊe2µÄֵΪ£¨¡¡¡¡£©
| A£® | $\frac{9}{2}$ | B£® | $\frac{{3\sqrt{2}}}{2}$ | C£® | $\frac{3}{2}$ | D£® | $\frac{5}{4}$ |
18£®ÔÚÈçͼËùʾµÄ³ÌÐòͼÖУ¬Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¬¦Áx¡Ü0}\\{lo{g}_{\frac{1}{2}}x£¬x£¾0}\end{array}\right.$£¬ÔòÊä³öµÄ½á¹ûÊÇ£¨¡¡¡¡£©

| A£® | -3 | B£® | $\frac{1}{16}$ | C£® | $\frac{1}{4}$ | D£® | 4 |