ÌâÄ¿ÄÚÈÝ

6£®ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}x=12cos¦È\\ y=4sin¦È\end{array}\right.$£¨²ÎÊý¦È¡ÊR£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µãQµÄ¼«×ø±êΪ$£¨4\sqrt{2}£¬\frac{¦Ð}{4}£©$£®
£¨1£©½«ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Çó³öµãQµÄÖ±½Ç×ø±ê£»
£¨2£©ÉèPΪÇúÏßC1Éϵĵ㣬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÀûÓü«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯µÄ·½·¨£¬¿ÉµÃ½áÂÛ£»
£¨2£©ÀûÓòÎÊý·½³Ì£¬½áºÏÈý½Çº¯Êý֪ʶ£¬ÇóPQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵ£®

½â´ð ½â£º£¨1£©$¦Ñ=\frac{3}{{cos£¨¦È+\frac{¦Ð}{3}£©}}$£¬µÃ$\frac{1}{2}¦Ñcos¦È-\frac{{\sqrt{3}}}{2}¦Ñsin¦È=3$£¬
¹ÊÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$x-\sqrt{3}y-6=0$£¬
µãQµÄÖ±½Ç×ø±êΪ£¨4£¬4£©£®
£¨2£©ÉèP£¨12cos¦È£¬4sin¦È£©£¬¹ÊPQÖеãM£¨2+6cos¦È£¬2+2sin¦È£©£¬C2µÄÖ±Ïß·½³ÌΪ$x-\sqrt{3}y-6=0$£¬
µãMµ½C2µÄ¾àÀë$d=\frac{{|2+6cos¦È-\sqrt{3}£¨2+2sin¦È£©-6|}}{2}$=$|3cos¦È-\sqrt{3}sin¦È-2-\sqrt{3}|$
=$|2\sqrt{3}cos£¨¦È+\frac{¦Ð}{6}£©-2-\sqrt{3}|¡Ý|2\sqrt{3}-2-\sqrt{3}|=2-\sqrt{3}$£¬
PQÖеãMµ½ÇúÏßC2ÉϵĵãµÄ¾àÀëµÄ×îСֵÊÇ$2-\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø