题目内容

18.海面上有A,B,C三个灯塔,AB=10nmile,$BC=5\sqrt{6}$nmile,从A望C和B成600视角,则从B望C和A成(  )视角.
A.750B.450C.300D.150

分析 由题意抽象出△ABC,然后利用正弦定理求解.

解答 解:如图,

AB=10,BC=$5\sqrt{6}$,∠BAC=60°.
由正弦定理可得:$\frac{10}{sinC}=\frac{5\sqrt{6}}{sin60°}=\frac{5\sqrt{6}}{\frac{\sqrt{3}}{2}}=10\sqrt{2}$,
∴sinC=$\frac{\sqrt{2}}{2}$,
∵10$<5\sqrt{6}$,∴C=45°.
则∠ABC=180°-60°-45°=75°.
故从B望C和A成75°视角.
故选:A.

点评 本题考查了正弦定理在实际问题中的应用,理解题意,建立关系是解题的关键.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网