题目内容

已知函数f(x)=xln(x+1)-a(x+1),其中a为常数,
(1)求函数的定义域;
(2)若函数f(x)在[1,+∞)上是单调递增函数,求a的取值范围;
(3)若a>1,求g(x)=f′(x)-
ax
x+1
的单调区间.
考点:利用导数研究函数的单调性,函数的定义域及其求法
专题:导数的综合应用
分析:(1)根据对数函数的定义解出即可;
(2)先把f'(x)=ln(1+x)+
x
1+x
-a>0转化为a<ln(1+x)+
x
1+x
,再利用导函数研究出不等式右边的单调性,进而求出其最值即可求出实数a的取值范围;
(3)先求出函数g(x)的导函数,分情况得到导函数值为正和为负对应的变量的取值范围,进而求出其单调区间.
解答: 解:(1)∵x+1>0,
∴x>-1,
函数的定义域为(-1,+∞);
(2)由f'(x)=ln(1+x)+
x
1+x
-a>0
得a<ln(1+x)+
x
1+x

令h(x)=ln(1+x)+
x
1+x
,则h'(x)=
1
1+x
+
1
(1+x)2

当x∈[1,+∞)时,h'(x)>0,h(x)在[1,+∞)上递增,
∴a<h(1)=
1
2
+ln2.
∴实数a的取值范围是(-∞,
1
2
+ln2).
(3)g(x)=ln(1+x)+
(1-a)x
1+x
-a,x∈(-1,+∞),
则g'(x)=
x+2-a
(x+1)2
①当a>1时,x∈(-1,a-2),g'(x)<0,g(x)是减函数,
x∈(a-2,+∞)时,g'(x)>0,g(x)是增函数.
②当a≤1时,x∈(-1,+∞),g'(x)>0,g(x)是增函数.
所以:当a>1时,减区间为(-1,a-2),增区间为(a-2,+∞);
当a≤1时,增区间为(-1,+∞).
点评:本题主要研究利用导数研究函数的单调性.利用导数研究函数的单调性时,一般结论是:导数大于0对应区间为原函数的递增区间;导数小于0对应区间为原函数的递减区间.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网