题目内容
设x,y,z∈R+,求证:
+
+
≥x+y+z.
| 2x2 |
| y+z |
| 2y2 |
| z+x |
| 2z2 |
| x+y |
证明:∵x,y,z∈R+,
∴由基本不等式可得
+
≥ 2x①,
+
≥ 2y ②,
+
≥ 2z③.
把 ①②③相加可得
+
+
+ x + y + z≥2x+2y+2z,∴
+
+
≥ x + y + z成立.
∴由基本不等式可得
| 2x2 |
| y+z |
| y+z |
| 2 |
| 2y2 |
| x+z |
| x+z |
| 2 |
| 2z2 |
| x+y |
| x+y |
| 2 |
把 ①②③相加可得
| 2x2 |
| y+z |
| 2y2 |
| z+x |
| 2z2 |
| x+y |
| 2x2 |
| y+z |
| 2y2 |
| z+x |
| 2z2 |
| x+y |
练习册系列答案
相关题目