题目内容

设x,y,z∈R+,且3x=4y=6z
(1)求证:
1
z
-
1
x
=
1
2y
;  
(2)比较3x,4y,6z的大小.
分析:(1)设3x=4y=6z=t,化指数式为对数式后求出x,y,z,然后直接代入等式两端加以证明;
(2)因为x,y,z均为正数,利用作商法证明.
解答:(1)证明:设3x=4y=6z=t.∵x>0,y>0,z>0,∴t>1,lgt>0,
x=log3t=
lgt
lg3
y=log4t=
lgt
lg4
z=log6t=
lgt
lg6

1
z
-
1
x
=
lg6
lgt
-
lg3
lgt
=
lg2
lgt
=
lg4
2lgt
=
1
2y

(2)∵3x>0,4y>0,且
3x
4y
=
3
lgt
lg3
4
lgt
lg4
=log3
427
<1

∴3x<4y,同理4y<6z,
故3x<4y<6z.
点评:本题考查了指数式和对数式的互化,考查了作商法进行正实数的大小比较,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网