题目内容
1.如果实数x、y满足x2+(y-3)2=1,那么$\frac{y}{x}$的取值范围是( )| A. | [2$\sqrt{2}$,+∞) | B. | (-∞,-2$\sqrt{2}$] | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | (-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞) |
分析 由题意可得$\frac{y}{x}$表示以(0,3)为圆心1为半径的圆上的点和原点连线的斜率k,由直线和圆的位置关系数形结合可得.
解答 解:∵实数x、y满足x2+(y-3)2=1,
∴$\frac{y}{x}$表示以(0,3)为圆心1为半径的圆上的点和原点连线的斜率k,
当直线与圆相切时,联立x2+(y-3)2=1和y=kx消去y并整理可得(1+k2)x2-6kx+8=0,
由△=36k2-32(1+k2)=0可解得k=±2$\sqrt{2}$,
故$\frac{y}{x}$的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$],
故选:C.
点评 本题考查简单线性规划,涉及直线和圆的位置关系,属中档题.
练习册系列答案
相关题目
12.已知tan(-$\frac{14π}{15}$)=a,那么sin1992°等于( )
| A. | $\frac{|a|}{\sqrt{1+{a}^{2}}}$ | B. | $\frac{a}{\sqrt{1+{a}^{2}}}$ | C. | -$\frac{a}{\sqrt{1+{a}^{2}}}$ | D. | -$\frac{1}{\sqrt{1+{a}^{2}}}$ |
9.已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,y≤$\sqrt{x}$},若向区域Ω上随机投一点P,则点P落入区域A的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{8}{27}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{9}$ |
6.A、B、C、D.E、F共6人站成一排照相,要求A不站在两侧,而且B、C两人站在一起,那么不同的站法种数为( )
| A. | 72 | B. | 96 | C. | 144 | D. | 288 |
16.设集合A={f(x)|存在互不相等的正整数m,n,k,使得[f(n)]2=f(m)f(k)成立},则下列不属于集合A的函数是( )
| A. | f(x)=1+x${\;}^{\frac{1}{3}}$ | B. | f(x)=1+lgx | C. | f(x)=1+2x | D. | f(x)=1+cos$\frac{π}{3}$x |