题目内容

已知等差数列{an}中,公差d≠0,a1=2,且a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
1
anan+1
,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由题意列出方程,解得公差d,写出通项公式;
(Ⅱ)利用裂项相消法对数列求和即得结论.
解答: 解:(I)设数列{an}的公差为d
∵a1,a3,a7成等比数列
a
2
3
=a1a7,∴(a1+2d)2=a1(a1+6d)
又a1=2,∴d=1或d=0(舍去)
∴an=2+(n-1)•1=n+1;
(Ⅱ)由(Ⅰ)得bn=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴Tn=b1+b2+…+bn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
=
n
2(n+2)
点评:本题考查等差数列的性质及裂项相消法对数列求和,注意方程思想在解题中的运用,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网