题目内容
20.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”它体现了一种无限与有限转化过程,比如在表达式1$+\frac{1}{1+\frac{1}{1+…}}$中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1$+\frac{1}{x}$=x(x>0)求得x=$\frac{1+\sqrt{5}}{2}$,类似上述过程,则 $\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=3.分析 通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可
解答 解:由已知代数式的求值方法:
先换元,再列方程,解方程,求解(舍去负根),
可得要求的式子.
令$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=m(m>0),
则两边平方得,则3+2$\sqrt{3+2\sqrt{3+2\sqrt{…}}}$=m2,
即3+2m=m2,解得,m=3,m=-1舍去.
故答案为:3.
点评 本题考查类比推理的思想方法,考查从方法上类比,是一道中档题.
练习册系列答案
相关题目
8.已知$\frac{a+i}{i}$=b+2i(a,b∈R),其中为虚数单位,则a-b=( )
| A. | -3 | B. | -2 | C. | -1 | D. | 1 |
12.sin22α+cos22α=( )
| A. | 1 | B. | cos2α | C. | 2 | D. | sin2α |
9.要得到函数y=sinx的图象,只需将函数y=sin(2x+$\frac{π}{4}$)的图象上所有点的( )
| A. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平行移动$\frac{π}{8}$个单位长度 | |
| B. | 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动$\frac{π}{4}$个单位长度 | |
| C. | 横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度 | |
| D. | 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动$\frac{π}{4}$个单位长度 |
9.
在Rt△ABC中,∠C=$\frac{π}{2}$,AC=1,BC=$\sqrt{3}$,D是AB边上的动点,设BD=x,把△BDC沿DC翻折为△B′DC,若存在某个位置,使得异面直线B′C与AD所成的角为$\frac{π}{3}$,则实数x的取值范围是( )
| A. | 0<x<$\frac{3-\sqrt{3}}{2}$ | B. | $\frac{3-\sqrt{3}}{2}$<x<2 | C. | 0<x<$\frac{2-\sqrt{3}}{2}$ | D. | $\frac{2-\sqrt{2}}{2}$<x<2 |