题目内容
4.甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高和乙楼高的比为3:2.分析 由题意画出图形,过点C作CM⊥AB于点M,根据题意得:CM=BD=20米,∠ACM=30°,∠ADB=60°,然后在Rt△ACM与Rt△ADB中,用正切函数计算求得两楼的高度,即可得出结论.
解答
解:如图过点C作CM⊥AB于点M,根据题意得:CM=BD=20米,
∠ACM=30°,∠ADB=60°,
在Rt△ACM中,tan30°=$\frac{AM}{CM}$=$\frac{\sqrt{3}}{3}$
∴AM=$\frac{\sqrt{3}}{3}$CM=20×$\frac{\sqrt{3}}{3}$=$\frac{20\sqrt{3}}{3}$(米),
在Rt△ADB中,tan60°=$\frac{AB}{BD}$
∴AB=DB•tan60°=20$\sqrt{3}$(米),
CD=AB-AM=20$\sqrt{3}$-$\frac{20\sqrt{3}}{3}$=$\frac{40\sqrt{3}}{3}$(米)
所以甲楼高和乙楼高的比为3:2,
故答案为3:2.
点评 本题考查了应用正弦定理、余弦定理解三角形应用题问题;一般是根据题意,从实际问题中抽象出一个或几个三角形,通过解这些三角形,从而使实际问题得到解决.
练习册系列答案
相关题目
3.集合A={x|x>0},B={-2,-1,1,2},则(∁RA)∩B=( )
| A. | (0,+∞) | B. | {-2,-1,1,2} | C. | {-2,-1} | D. | {1,2} |
9.已知集合M={y|y=x2},用自然语言描述M应为( )
| A. | 函数y=x2的函数值组成的集合 | B. | 函数y=x2的自变量的值组成的集合 | ||
| C. | 函数y=x2的图象上的点组成的集合 | D. | 以上说法都不对 |
16.在平行四边形ABCD中,∠BAD=60°,E是CD上一点,且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,|$\overrightarrow{AB}$|=λ|$\overrightarrow{AD}$|.若$\overrightarrow{AC}$•$\overrightarrow{EB}$=$\frac{1}{2}$$\overrightarrow{AD}$2,则λ等于( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
13.从某地区一次中学生知识竞赛中,随机抽取了30名学生的成绩,绘成如图所示的2×2列联表:
(1)试问有没有90%的把握认为优秀一般与性别有关;
(2)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机抽取3人,用ξ表示所选3人中优秀的人数,试写出ξ的分布列,并求出ξ的数学期望,.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立性检验临界表:
| 优秀 | 一般 | 合计 | |
| 男生 | 7 | 6 | |
| 女生 | 5 | 12 | |
| 合计 |
(2)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机抽取3人,用ξ表示所选3人中优秀的人数,试写出ξ的分布列,并求出ξ的数学期望,.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立性检验临界表:
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |