ÌâÄ¿ÄÚÈÝ
9£®ÉèA£¬B·Ö±ðÊÇÖ±Ïß$y=\frac{{\sqrt{2}}}{2}x$ºÍ$y=-\frac{{\sqrt{2}}}{2}x$Éϵ͝µã£¬ÇÒ$|AB|=2\sqrt{2}$£®ÉèOÎª×ø±êԵ㣬¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®£¨¢ñ£© Ç󶯵ãPµÄ¹ì¼£·½³ÌC1£»
£¨¢ò£©Ò»Ö±Ë«ÇúÏßC2ÒÔC1µÄÉ϶¥µãΪ½¹µã£¬ÇÒÒ»Ìõ½¥½üÏß·½³ÌΪx+2y=0£¬ÇóË«ÇúÏßC2µÄ·½³Ì£®
·ÖÎö £¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬ÓÉ$|AB|=2\sqrt{2}$£¬µÃ£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡¢ÙÉèP£¨x£¬y£©£¬ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$´úÈëÖТÙÕûÀíµÃ¶¯µãPµÄ¹ì¼£·½³ÌC1
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬ËùÒÔm2+n2=4£¬ÓÉm+2n=0µÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$¼´¿É£®
½â´ð ½â£º£¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬
¡ß$|AB|=2\sqrt{2}$£¬¡à£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡¢Ù
ÉèP£¨x£¬y£©£¬¡ß$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$
´úÈëÖТÙÕûÀíµÃ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
¶¯µãPµÄ¹ì¼£·½³ÌC1£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬
ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬
ËùÒÔm2+n2=4£¬ÓÉx+2y=0µÃ$y=\frac{1}{2}x$£¬¡à$\frac{m}{n}=\frac{1}{2}$£¬
½âµÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$
ËùÒÔ£¬Ë«ÇúÏß·½³ÌΪ$\frac{{5{y^2}}}{4}-\frac{{5{x^2}}}{16}=1$£®
µãÆÀ ±¾Ì⿼²éÁËÏà¹Øµã·¨Çó¹ì¼£·½³Ì£¬¼°ÒÑ֪˫ÇúÏß½¥½üÏßÇóË«ÇúÏß·½³ÌµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮
| A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{5}$ |
| A£® | $\frac{¦Ð}{3}$ | B£® | $\frac{¦Ð}{6}$ | C£® | $\frac{3}{4}¦Ð$ | D£® | $\frac{2}{3}¦Ð$ |
| A£® | $\overrightarrow{a}$+$\overrightarrow{b}$ | B£® | $\overrightarrow{a}$-$\overrightarrow{b}$ | C£® | 2$\overrightarrow{a}$-$\overrightarrow{b}$ | D£® | $\overrightarrow{a}$-2$\overrightarrow{b}$ |
| A£® | £¨$\frac{1}{4}$£¬+¡Þ£© | B£® | £¨0£¬$\frac{1}{4}$£© | C£® | £¨-¡Þ£¬$\frac{1}{4}$£© | D£® | £¨-¡Þ£¬$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£© |
£¨¢ñ£©´ÓÑù±¾ÖÐÈÎÒâѡȡ2ÃûѧÉú£¬ÇóÇ¡ºÃÓÐ1ÃûѧÉúµÄ´ò·Ö²»µÍÓÚ4·ÖµÄ¸ÅÂÊ£»
£¨¢ò£©ÈôÒÔÕâ100ÈË´ò·ÖµÄƵÂÊ×÷Ϊ¸ÅÂÊ£¬ÔÚ¸ÃÐ£Ëæ»úѡȡ2ÃûѧÉú½øÐдò·Ö£¨Ñ§Éú´ò·ÖÖ®¼äÏ໥¶ÀÁ¢£©¼ÇX±íʾÁ½ÈË´ò·ÖÖ®ºÍ£¬ÇóXµÄ·Ö²¼ÁкÍE£¨X£©£®
£¨¢ó£©¸ù¾Ý£¨¢ò£©µÄ¼ÆËã½á¹û£¬ºóÇÚ´¦¶Ô²ÍÌü·þÎñÖÊÁ¿Çé¿ö¶¨ÎªÈý¸öµÈ¼¶£¬²¢Öƶ¨Á˶ԲÍÌüÏàÓ¦µÄ½±³Í·½°¸£¬Èç±íËùʾ£¬Éèµ±Ô½±½ðΪY£¨µ¥Î»£ºÔª£©£¬ÇóE£¨Y£©£®
| ·þÎñÖÊÁ¿ÆÀ·ÖX | X¡Ü5 | 6¡ÜX¡Ü8 | X¡Ý9 |
| µÈ¼¶ | ²»ºÃ | ½ÏºÃ | ÓÅÁ¼ |
| ½±³Í±ê×¼£¨Ôª£© | -1000 | 2000 | 3000 |