ÌâÄ¿ÄÚÈÝ

9£®ÉèA£¬B·Ö±ðÊÇÖ±Ïß$y=\frac{{\sqrt{2}}}{2}x$ºÍ$y=-\frac{{\sqrt{2}}}{2}x$Éϵ͝µã£¬ÇÒ$|AB|=2\sqrt{2}$£®ÉèOÎª×ø±êÔ­µã£¬¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®
£¨¢ñ£© Ç󶯵ãPµÄ¹ì¼£·½³ÌC1£»
£¨¢ò£©Ò»Ö±Ë«ÇúÏßC2ÒÔC1µÄÉ϶¥µãΪ½¹µã£¬ÇÒÒ»Ìõ½¥½üÏß·½³ÌΪx+2y=0£¬ÇóË«ÇúÏßC2µÄ·½³Ì£®

·ÖÎö £¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬ÓÉ$|AB|=2\sqrt{2}$£¬µÃ£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡­¢ÙÉèP£¨x£¬y£©£¬ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$´úÈëÖТÙÕûÀíµÃ¶¯µãPµÄ¹ì¼£·½³ÌC1
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬ËùÒÔm2+n2=4£¬ÓÉm+2n=0µÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$¼´¿É£®

½â´ð ½â£º£¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬
¡ß$|AB|=2\sqrt{2}$£¬¡à£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡­¢Ù
ÉèP£¨x£¬y£©£¬¡ß$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$
´úÈëÖТÙÕûÀíµÃ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
¶¯µãPµÄ¹ì¼£·½³ÌC1£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬
ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬
ËùÒÔm2+n2=4£¬ÓÉx+2y=0µÃ$y=\frac{1}{2}x$£¬¡à$\frac{m}{n}=\frac{1}{2}$£¬
½âµÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$
ËùÒÔ£¬Ë«ÇúÏß·½³ÌΪ$\frac{{5{y^2}}}{4}-\frac{{5{x^2}}}{16}=1$£®

µãÆÀ ±¾Ì⿼²éÁËÏà¹Øµã·¨Çó¹ì¼£·½³Ì£¬¼°ÒÑ֪˫ÇúÏß½¥½üÏßÇóË«ÇúÏß·½³ÌµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø