题目内容
已知椭圆
的短半轴长为
,动点![]()
在直线
(
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以
为直径且被直线
截得的弦长为
的圆的方程;
(3)设
是椭圆的右焦点,过点
作
的垂线与以
为直径的圆交于点
,
求证:线段
的长为定值,并求出这个定值.
(1)
,(2)
,(3)
.
解析试题分析:(1)求椭圆标准方程,基本方法为待定系数法.由题意得
及
,因此可解得
,
.(2)圆的弦长问题,通常化为直角三角形,即半径、半弦长、圆心到直线距离构成一个直角三角形. 圆心为
,圆心到直线
的距离
,因此
,
,所求圆的方程为
. (3)涉及定值问题,一般通过计算,以算代证.本题有两种算法,一是利用射影定理,只需求出点
在
上射影
的坐标,即由两直线方程
得
,因此
.二是利用向量坐标表示,即设
,根据两个垂直,消去参数t,确定
.
试题解析:(1)由点
在直线
上,得
,
故
, ∴
. 从而
. 2分
所以椭圆方程为
. 4分
(2)以
为直径的圆的方程为
.
即
. 其圆心为
,半径
. 6分
因为以
为直径的圆被直线
截得的弦长为
,
所以圆心到直线
的距离
.
所以
,解得
.所求圆的方程为
. 9分
(3)方法一:由平几知:
,
直线![]()
,直线![]()
,
由
得
.
∴
.
所以线段
的长为定值
. 13分
方法二:设
,
则
.
.
又
.
所以,
为定值. 13分
考点:椭圆方程,圆的弦长,定值问题
练习册系列答案
相关题目