题目内容

已知数列{an}满足a1=-1,an+1=
(3n+3)an+(4n+6)
n
,数列{bn}满足bn=
an+2
n

(Ⅰ)求证:数列{bn}为等比数列并求{bn}的通项公式;
(Ⅱ)数列{cn}的前n项的和为Sn,且cn=
3n-1
an+2
.求证:n≥2时,
S
2
n
>2(
S2
2
+
S3
3
+…+
Sn
n
)
考点:数列与不等式的综合,等比关系的确定,数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由题意得an+1+2=
(3n+3)an+(4n+6)
n
+2=
(3n+3)an+(6n+6)
n
,故
an+1+2
n+1
=
3(an+2)
n
,即bn+1=3bn,由等比数列的定义即可得证;
(Ⅱ)由(Ⅰ)得an+2=n•3n-1,cn=
3n-1
an+2
=
1
n
s
2
n
-
s
2
n-1
=(sn+sn-1)(sn-sn-1)=
1
n
(sn+sn-1)=
1
n
(sn+sn-
1
n
)=2•
sn
n
-
1
n2
,利用累加法求得
s
2
n
=2(
s2
2
+
s3
3
+…+
sn
n
)+1-(
1
22
+
1
32
+…+
1
n2
),由
1
22
+
1
32
+…+
1
n2
<1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=1-
1
n
<1,即可得出结论.
解答: (Ⅰ)解:∵an+1=
(3n+3)an+(4n+6)
n

∴an+1+2=
(3n+3)an+(4n+6)
n
+2=
(3n+3)an+(6n+6)
n

an+1+2
n+1
=
3(an+2)
n
,即bn+1=3bn
∴数列{bn}是首项为b1=a1+2=1,以3为公比的等比数列,
∴bn=3n-1
(Ⅱ)证明:由(Ⅰ)得an+2=n•3n-1,∴cn=
3n-1
an+2
=
1
n

s
2
n
-
s
2
n-1
=(sn+sn-1)(sn-sn-1)=
1
n
(sn+sn-1)=
1
n
(sn+sn-
1
n
)=2•
sn
n
-
1
n2

同理
s
2
n-1
-
s
2
n-2
=2•
sn-1
n-1
-
1
(n-1)2
,…
s
2
2
-
s
2
1
=2•
s2
2
-
1
22

由累加法可得
s
2
n
-
s
2
1
=2(
s2
2
+
s3
3
+…+
sn
n
)-(
1
22
+
1
32
+…+
1
n2

又s1=1,∴
s
2
n
=2(
s2
2
+
s3
3
+…+
sn
n
)+1-(
1
22
+
1
32
+…+
1
n2
),
∴要证
S
2
n
>2(
S2
2
+
S3
3
+…+
Sn
n
)
.只需证1-(
1
22
+
1
32
+…+
1
n2
>0,
即证
1
22
+
1
32
+…+
1
n2
<1,
1
22
+
1
32
+…+
1
n2
<1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=1-
1
n
<1,
∴n≥2时,
S
2
n
>2(
S2
2
+
S3
3
+…+
Sn
n
)
点评:本题属于数列综合性问题,主要考查等比数列的定义及累加法求数列的通项公式,裂项法求数列的和等知识,综合性强,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网