题目内容
已知数列{an}满足a1=-1,an+1=
,数列{bn}满足bn=
.
(Ⅰ)求证:数列{bn}为等比数列并求{bn}的通项公式;
(Ⅱ)数列{cn}的前n项的和为Sn,且cn=
.求证:n≥2时,
>2(
+
+…+
).
| (3n+3)an+(4n+6) |
| n |
| an+2 |
| n |
(Ⅰ)求证:数列{bn}为等比数列并求{bn}的通项公式;
(Ⅱ)数列{cn}的前n项的和为Sn,且cn=
| 3n-1 |
| an+2 |
| S | 2 n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
考点:数列与不等式的综合,等比关系的确定,数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由题意得an+1+2=
+2=
,故
=
,即bn+1=3bn,由等比数列的定义即可得证;
(Ⅱ)由(Ⅰ)得an+2=n•3n-1,cn=
=
,
-
=(sn+sn-1)(sn-sn-1)=
(sn+sn-1)=
(sn+sn-
)=2•
-
,利用累加法求得
=2(
+
+…+
)+1-(
+
+…+
),由
+
+…+
<1-
+
-
+…+
-
=1-
<1,即可得出结论.
| (3n+3)an+(4n+6) |
| n |
| (3n+3)an+(6n+6) |
| n |
| an+1+2 |
| n+1 |
| 3(an+2) |
| n |
(Ⅱ)由(Ⅰ)得an+2=n•3n-1,cn=
| 3n-1 |
| an+2 |
| 1 |
| n |
| s | 2 n |
| s | 2 n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| sn |
| n |
| 1 |
| n2 |
| s | 2 n |
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
解答:
(Ⅰ)解:∵an+1=
,
∴an+1+2=
+2=
,
∴
=
,即bn+1=3bn,
∴数列{bn}是首项为b1=a1+2=1,以3为公比的等比数列,
∴bn=3n-1.
(Ⅱ)证明:由(Ⅰ)得an+2=n•3n-1,∴cn=
=
,
∴
-
=(sn+sn-1)(sn-sn-1)=
(sn+sn-1)=
(sn+sn-
)=2•
-
,
同理
-
=2•
-
,…
-
=2•
-
,
由累加法可得
-
=2(
+
+…+
)-(
+
+…+
)
又s1=1,∴
=2(
+
+…+
)+1-(
+
+…+
),
∴要证
>2(
+
+…+
).只需证1-(
+
+…+
>0,
即证
+
+…+
<1,
∵
+
+…+
<1-
+
-
+…+
-
=1-
<1,
∴n≥2时,
>2(
+
+…+
).
| (3n+3)an+(4n+6) |
| n |
∴an+1+2=
| (3n+3)an+(4n+6) |
| n |
| (3n+3)an+(6n+6) |
| n |
∴
| an+1+2 |
| n+1 |
| 3(an+2) |
| n |
∴数列{bn}是首项为b1=a1+2=1,以3为公比的等比数列,
∴bn=3n-1.
(Ⅱ)证明:由(Ⅰ)得an+2=n•3n-1,∴cn=
| 3n-1 |
| an+2 |
| 1 |
| n |
∴
| s | 2 n |
| s | 2 n-1 |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| sn |
| n |
| 1 |
| n2 |
同理
| s | 2 n-1 |
| s | 2 n-2 |
| sn-1 |
| n-1 |
| 1 |
| (n-1)2 |
| s | 2 2 |
| s | 2 1 |
| s2 |
| 2 |
| 1 |
| 22 |
由累加法可得
| s | 2 n |
| s | 2 1 |
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
又s1=1,∴
| s | 2 n |
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
∴要证
| S | 2 n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
即证
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
∵
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
∴n≥2时,
| S | 2 n |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
点评:本题属于数列综合性问题,主要考查等比数列的定义及累加法求数列的通项公式,裂项法求数列的和等知识,综合性强,属于难题.
练习册系列答案
相关题目
已知x,y的取值如表所示;
如果y与x呈线性相关,且线性回归方程为
=bx+6.5则b=( )
| x | 2 | 3 | 4 |
| y | 6 | 4 | 5 |
| y |
| A、-0.5 | B、0.5 |
| C、-0.2 | D、0.2 |
设a<b<0,以下结论:①ac2<bc2;②
<
;③a2<ab;④
>
,正确的是( )
| 1 |
| a |
| 1 |
| b |
| a |
| b |
| b |
| a |
| A、① | B、② | C、③ | D、④ |
函数f(x)=lgx+x-5的零点所在区间为( )
| A、(1,2) |
| B、(2,3) |
| C、(3,4) |
| D、(4,5) |