题目内容
9.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+4}$,则an=$\frac{1}{{2}^{2n-1}-1}$.分析 由已知数列递推式可得数列{$\frac{1}{{a}_{n}}+1$}构成以2为首项,以4为公比的等比数列,求出等比数列的通项公式后可得an.
解答 解:由an+1=$\frac{{a}_{n}}{3{a}_{n}+4}$,得$\frac{1}{{a}_{n+1}}=\frac{4}{{a}_{n}}+3$,
∴$\frac{1}{{a}_{n+1}}+1=4(\frac{1}{{a}_{n}}+1)$,
∵$\frac{1}{{a}_{1}}+1=2≠0$,
∴数列{$\frac{1}{{a}_{n}}+1$}构成以2为首项,以4为公比的等比数列,
则$\frac{1}{{a}_{n}}+1=2×{4}^{n-1}$,
∴${a}_{n}=\frac{1}{{2}^{2n-1}-1}$.
故答案为:$\frac{1}{{2}^{2n-1}-1}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.
练习册系列答案
相关题目
17.已知命题p:?x∈R,cosx>1,则¬p是( )
| A. | ?x∈R,cosx<1 | B. | ?x∈R,cosx<1 | C. | ?x∈R,cosx≤1 | D. | ?x∈R,cosx≤1 |
4.两人掷一枚硬币,掷出正面多者为胜,但这枚硬币质地不均匀,以致出现正面的概率P1与出现反面的概率P2不相等,已知出现正面与出现反面是对立事件,设两人各掷一次成平局的概率为P,则P与0.5的大小关系是( )
| A. | P<0.5 | B. | P=0.5 | C. | P>0.5 | D. | 不确定 |
1.在数列{an}中,a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=3n,则an为( )
| A. | an=3n | B. | an=3${\;}^{\frac{n(n+1)}{2}}$ | C. | an=3${\;}^{\frac{n(n-1)}{2}}$ | D. | an=3${\;}^{\frac{n}{2}}$ |