题目内容
计算:| lim |
| n→∞ |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| n |
| n2+1 |
分析:由于计算:
(
+
+…+
),先对于
+
+…+
通分求和化简,在利用数列的结论求的极限.
| lim |
| n→∞ |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| n |
| n2+1 |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| n |
| n2+1 |
解答:解:
(
+
+…+
)=
=
=
.
故答案为:
| lim |
| n→∞ |
| 1 |
| n2+1 |
| 2 |
| n2+1 |
| n |
| n2+1 |
| lim |
| n→∞ |
| 1+2+…+n |
| n2+1 |
| lim |
| n→∞ |
| ||
| n2+1 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:此题考查了等差数列的求和公式,还考查了数列的极限及学生的计算能力.
练习册系列答案
相关题目