题目内容
计算:
(
+
+…+
)=
.
| lim |
| n→∞ |
| 1 |
| n2 |
| 2 |
| n2 |
| n |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
分析:由于
+
+…+
=
=
,代入可求极限
| 1 |
| n2 |
| 2 |
| n2 |
| n |
| n2 |
| n(n+1) |
| 2n2 |
1+
| ||
| 2 |
解答:解:
(
+
+…+
)=
=
=
=
故答案为:
| lim |
| n→∞ |
| 1 |
| n2 |
| 2 |
| n2 |
| n |
| n2 |
| lim |
| n→∞ |
| 1+2+…+n |
| n2 |
=
| lim |
| n→∞ |
| ||
| n2 |
| lim |
| n→∞ |
1+
| ||
| 2 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题主要考查了数列极限的求解,解题的关键是利用等差数列的求和公式,属于基础试题
练习册系列答案
相关题目