题目内容

(2008•卢湾区二模)计算:
lim
n→∞
(1+
2
3n+1
)n
=
e
2
3
e
2
3
分析:根据题意,设
3n+1
2
=t
,则n=
2t-1
3
,变形可得
lim
n→∞
[(1+
1
t
)
t
] 
2
3
lim
n→∞
(1+
1
t
)
1
3
,分析可得,当n→∞时,它的极限为e
2
3
,进而可得答案.
解答:解:设
3n+1
2
=t
,则n=
2t-1
3

lim
n→∞
(1+
2
3n+1
)
n
=
lim
n→∞
(1+
1
t
)
2t-1
3
=
lim
n→∞
[(1+
1
t
)
t
] 
2
3
lim
n→∞
(1+
1
t
)
1
3
=e
2
3

故答案为:e
2
3
点评:本题考查极限的计算,需要牢记常见的极限的化简方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网