题目内容

(理)已知数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,满足关系Sn=2an-2.

(1)求数列{an}的通项公式;

(2)设数列{bn}的前n项和为Tn,且bn=,求证:对任意正整数n,总有Tn<2;

(3)在正数数列{cn}中,设(cn)n+1=an+1(n∈N*),求数列{lncn}中的最大项.

(文)已知数列{xn}满足xn+1-xn=()n,n∈N*,且x1=1.设an=xn,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.

(1)求xn的表达式;

(2)求T2n;

(3)若Qn=1(n∈N*),试比较9T2n与Qn的大小,并说明理由.

(理)(1)解:∵Sn=2an-2(n∈N*),                                               ①

∴Sn-1=2an-1-2(n≥2,n∈N*).                                               ② 

①-②,得an=2an-2an-1(n≥2,n∈N*).

∵an≠0,∴=2(n≥2,n∈N*),

即数列{an}是等比数列.                                                      

∵a1=S1,

∴a1=2a1-2,即a1=2.

∴an=2n(n∈N*).                                                          

(2)证明:∵对任意正整数n,总有bn=,                         

∴Tn=

=1+1<2.                                 

(3)解:由(cn)n+1=an+1(n∈N*),知lncn=.

令f(x)=,则f′(x)=.

∵在区间(0,e)上,f′(x)>0,在区间(e,+∞)上,f′(x)<0,

∴在区间(e,+∞)上f(x)为单调递减函数.                                         

∴n≥2且n∈N*时,{lncn}是递减数列.

又lnc1<lnc2,∴数列{lncn}中的最大项为lnc2=ln3.                             

(文)解:(1)∵xn+1-xn=()n,

∴xn=x1+(x2-x1)+(x3-x2)+…+(xn-xn-1)

=1+()+()2+…+()n-1

=

=.                                                          

当n=1时上式也成立,

∴xn=(n∈N*).                                                

(2)an=.

∵T2n=a1+2a2+3a3+…+(2n-1)a2n-1+2na2n

=()2+2()3+3()4+…+(2n-1)()2n+2n()2n+1,                        ①

T2n=()3+2()4+3()5+…+(2n-1)()2n+1+2n()2n+2.              ②

①-②,得T2n=()2+()3+…+()2n+1-2n()2n+2.                       

T2n=-2n()2n+2

=.

∴T2n=.                             

(3)由(2)可得9T2n=.

又Qn=,

当n=1时,22n=4,(2n+1)2=9,∴9T2n<Qn;                                        

当n=2时,22n=16,(2n+1)2=25,∴9T2n<Qn;                                      

当n≥3时,22n=[(1+1)n2=()2>(2n+1)2,

∴9T2n>Qn.

综上所述,当n=1,2时,9T2n<Qn;当n≥3时,9T2n>Qn.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网