题目内容

(理)已知数列{an}的前n项和为Sn,且满足a1=,an+2SnSn-1=0(n≥2),

(1)判断{}是否为等差数列?并证明你的结论;

(2)求Sn和an;

(3)求证:S12+S22+…+Sn2.

(文)数列{an}的前n项和Sn(n∈N*),点(an,Sn)在直线y=2x-3n上.

(1)求证:数列{an+3}是等比数列;

(2)求数列{an}的通项公式;

(3)数列{an}中是否存在成等差数列的三项?若存在,求出一组适合条件的三项;若不存在,请说明理由.

答案:(理)(1)解:S1=a1=,∴=2.

当n≥2时,an=Sn-Sn-1,即Sn-Sn-1=-2SnSn-1,

.故{}是以2为首项,以2为公差的等差数列.

(2)解:由(1)得=2+(n-1)·2=2n,Sn=.

当n≥2时,an=-2SnSn-1=-;

当n=1时,a1=.∴an=

(3)证法一:①当n=1时,S12==成立.

②假设n=k时,不等式成立,即S12+S22+…+Sk2成立.

则当n=k+1时,S12+S22+…+Sk2+Sk+12

即当n=k+1时,不等式成立.由①②可知对任意n∈N*不等式成立.

证法二:S12+S22+…+Sn2

.

(文)(1)证明:由题意知Sn=2an-3n,∴an+1=Sn+1-Sn=2an+1-3(n+1)-2an+3n.∴an+1=2an+3.

∴an+1+3=2(an+3).∴.又a1=S1=2a1-3,a1=3,∴a1+3=6.

∴数列{an+3}是以6为首项、以2为公比的等比数列.

(2)解:由(1)得an+3=6·2n-1=3·2n,∴an=3·2n-3.

(3)解:设存在s、p、r∈N*且s<p<r使as、ap、ar成等差数列,

∴2ap=as+ar.∴2(3·2p-3)=3·2s-3+3·2r-3.∴2p+1=2s+2r,

即2p-s+1=1+2r-s.(*)∵s、p、r∈N*且s<p<r,∴2p-s+1为偶数,1+2r-s为奇数.∴(*)为矛盾等式,不成立.故这样的三项不存在.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网