题目内容

13.直线4x-3y+2=0与圆x2+y2+4x=0交于A,B两点,则线段AB的垂直平分线的方程是3x+4y-6=0.

分析 把圆的方程化为标准形式,求得圆心和半径,再根据线段AB的垂直平分线经过圆心,且和直线4x-3y+2=0垂直,用点斜式求得要求直线的方程.

解答 解:圆x2+y2+4x=0,即圆(x-2)2+y2 =4,表示以M(2,0)为圆心、半径等于2的圆.
由题意可得,线段AB的垂直平分线经过点M,且和直线4x-3y+2=0垂直,故所求直线的斜率为-$\frac{3}{4}$,
故线段AB的垂直平分线的方程为 y-0=-$\frac{3}{4}$(x-2),即 3x+4y-6=0,
故答案为:3x+4y-6=0.

点评 本题主要考查直线和圆相交的性质,两条直线垂直的性质,用点斜式求直线的方程,属于基础题.

练习册系列答案
相关题目
5.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;
(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩的频数分布表

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网