题目内容

2.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品不喜欢甜品合计
南方学生602080
北方学生101020
合计7030100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.05 
0.01
0.005
k02.7063.841 
6.635
7.879

分析 (1)利用2×2列联表中的数据计算观测值x2,对照表中数据即可得出结论;
(2)利用列举法求出从这5名学生中任取3人的基本事件数,计算对应的概率即可.

解答 解:(1)将2×2列联表中的数据代入公式,计算得
x2=$\frac{100{×(60×10-20×10)}^{2}}{70×30×80×20}$=$\frac{100}{21}$≈4.762,
因为4.762>3.841,
所以有95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异;
(2)这5名数学系学生中,2名喜欢甜品的记为A、B,
其余3名不喜欢甜品的学生记为c、d、e,
则从这5名学生中任取3人的结果所组成的基本事件为
ABc,ABd,ABe,Acd,Ace,Ade,Bcd,Bce,Bde,cde,共10种;
3人中至多有1人喜欢甜品的基本事件是
Acd,Ace,Ade,Bcd,Bce,Bde,cde,共7种;
所以,至多有1人喜欢甜品的概率为P=$\frac{7}{10}$.

点评 本题考查了独立性检验的应用问题,也考查了利用列举法求古典概型的概率问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网