题目内容
14.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,那么|$\overrightarrow{a}$+$\overrightarrow{b}$||$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{21}$.分析 由|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,可得$\overrightarrow{a}•\overrightarrow{b}$=$|\overrightarrow{a}||\overrightarrow{b}|cos\frac{π}{3}$=1.再利用数量积运算性质即可得出.
解答 解:∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=$|\overrightarrow{a}||\overrightarrow{b}|cos\frac{π}{3}$=1×$2×\frac{1}{2}$=1.
∴|$\overrightarrow{a}$+$\overrightarrow{b}$||$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{1+{2}^{2}+2}\sqrt{1+{2}^{2}-2}$=$\sqrt{7}×\sqrt{3}$=$\sqrt{21}$.
故答案为:$\sqrt{21}$.
点评 本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
| A. | a-c>b-d | B. | ac>bd | C. | $\frac{a}{c}>\frac{d}{b}$ | D. | a+c>b+d |
| 喜欢甜品 | 不喜欢甜品 | 合计 | |
| 南方学生 | 60 | 20 | 80 |
| 北方学生 | 10 | 10 | 20 |
| 合计 | 70 | 30 | 100 |
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2>k0) | 0.10 | 0.05 | 0.01 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
| A. | $(-∞,\frac{1}{4}]$ | B. | $(-\frac{3}{4},+∞)$ | C. | $[-\frac{3}{4},\frac{1}{4}]$ | D. | $(-1,\frac{1}{4}]$ |